Anexo:Fórmulas que contienen a π

Número π
3.14159 26535 89793 23846 26433...
Usos
Propiedades
Valor
Personas
En la cultura popular
Temas relacionados
  • v
  • t
  • e

La siguiente es una lista de fórmulas importantes que involucran la constante matemática π (pi). Muchas de estas fórmulas se pueden encontrar en el artículo principal sobre el número π.

Geometría euclidiana

π = C d = C 2 r {\displaystyle \pi ={\frac {C}{d}}={\frac {C}{2r}}}

donde C es la circunferencia del círculo, d es el diámetro y r es el radio. Más generalmente:

A = π r 2 {\displaystyle A=\pi r^{2}}

donde A es el área del círculo. Más generalmente,

π = L w {\displaystyle \pi ={\frac {L}{w}}}

donde L y w son, respectivamente, el perímetro y el ancho de cualquier curva de ancho constante.

A = π a b {\displaystyle A=\pi ab}

donde A es el área demarcada por una elipse con semieje mayor a y semieje menor b.

C = 2 π agm ( a , b ) ( a 1 2 n = 2 2 n 1 ( a n 2 b n 2 ) ) {\displaystyle C={\frac {2\pi }{\operatorname {agm} (a,b)}}\left(a_{1}^{2}-\sum _{n=2}^{\infty }2^{n-1}(a_{n}^{2}-b_{n}^{2})\right)}

donde C es la circunferencia de una elipse con semieje mayor a y semieje menor b y a n , b n {\displaystyle a_{n},b_{n}} son las iteraciones aritméticas y geométricas de agm ( a , b ) {\displaystyle \operatorname {agm} (a,b)} , la media aritmético-geométrica de a y b con los valores iniciales a 0 = a {\displaystyle a_{0}=a} y b 0 = b {\displaystyle b_{0}=b} .

A = 4 π r 2 {\displaystyle A=4\pi r^{2}}

donde A es el área entre la bruja de Agnesi y su recta asintótica; r es el radio del círculo que lo define.

A = Γ ( 1 / 4 ) 2 2 π r 2 = π r 2 agm ( 1 , 1 / 2 ) {\displaystyle A={\frac {\Gamma (1/4)^{2}}{2{\sqrt {\pi }}}}r^{2}={\frac {\pi r^{2}}{\operatorname {agm} (1,1/{\sqrt {2}})}}}

donde A es el área de un squircle con radio menor r y Γ {\displaystyle \Gamma } es la función gamma.

A = ( k + 1 ) ( k + 2 ) π r 2 {\displaystyle A=(k+1)(k+2)\pi r^{2}}

donde A es el área de una epicicloide con el círculo más pequeño de radio r y el círculo más grande de radio kr ( k N {\displaystyle k\in \mathbb {N} } ), asumiendo que el punto inicial se encuentra en el círculo más grande.

A = ( 1 ) k + 3 8 π a 2 {\displaystyle A={\frac {(-1)^{k}+3}{8}}\pi a^{2}}

donde A es el área de una rosa con frecuencia angular k ( k N {\displaystyle k\in \mathbb {N} } ) y amplitud a.

L = Γ ( 1 / 4 ) 2 π c = 2 π c agm ( 1 , 1 / 2 ) {\displaystyle L={\frac {\Gamma (1/4)^{2}}{\sqrt {\pi }}}c={\frac {2\pi c}{\operatorname {agm} (1,1/{\sqrt {2}})}}}

donde L es el perímetro de la lemniscata de Bernoulli con distancia focal c.

V = 4 3 π r 3 {\displaystyle V={4 \over 3}\pi r^{3}}

donde V es el volumen de una esfera y r es el radio.

S A = 4 π r 2 {\displaystyle SA=4\pi r^{2}}

donde SA es el área de superficie de una esfera y r es el radio.

H = 1 2 π 2 r 4 {\displaystyle H={1 \over 2}\pi ^{2}r^{4}}

donde H es el hipervolumen de la triple esfera y r es el radio.

S V = 2 π 2 r 3 {\displaystyle SV=2\pi ^{2}r^{3}}

donde SV es el volumen de superficie de la triple-esfera y r es el radio.

Polígonos convexos regulares

Suma S de los ángulos internos de un polígono regular convexo de n lados:

S = ( n 2 ) π {\displaystyle S=(n-2)\pi }

Área A de un polígono regular convexo con n lados y lados de longitud s:

A = n s 2 4 cot π n {\displaystyle A={\frac {ns^{2}}{4}}\cot {\frac {\pi }{n}}}

Radio inscrito r de un polígono regular convexo con n lados y lados de longitud s :

r = s 2 cot π n {\displaystyle r={\frac {s}{2}}\cot {\frac {\pi }{n}}}

Circunradio R de un polígono regular convexo con n lados y lados de longitud s:

R = s 2 csc π n {\displaystyle R={\frac {s}{2}}\csc {\frac {\pi }{n}}}

Física

Λ = 8 π G 3 c 2 ρ {\displaystyle \Lambda ={{8\pi G} \over {3c^{2}}}\rho }
Δ x Δ p h 4 π {\displaystyle \Delta x\,\Delta p\geq {\frac {h}{4\pi }}}
R μ ν 1 2 g μ ν R + Λ g μ ν = 8 π G c 4 T μ ν {\displaystyle R_{\mu \nu }-{\frac {1}{2}}g_{\mu \nu }R+\Lambda g_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu }}
F = | q 1 q 2 | 4 π ε 0 r 2 {\displaystyle F={\frac {|q_{1}q_{2}|}{4\pi \varepsilon _{0}r^{2}}}}
μ 0 4 π 10 7 N / A 2 {\displaystyle \mu _{0}\approx 4\pi \cdot 10^{-7}\,\mathrm {N} /\mathrm {A} ^{2}}
  • Período aproximado de un péndulo simple de pequeña amplitud:
T 2 π L g {\displaystyle T\approx 2\pi {\sqrt {\frac {L}{g}}}}
  • Periodo exacto de un péndulo simple con amplitud. θ 0 {\displaystyle \theta _{0}} ( agm {\displaystyle \operatorname {agm} } es la media aritmético-geométrica):
T = 2 π agm ( 1 , cos ( θ 0 / 2 ) ) L g {\displaystyle T={\frac {2\pi }{\operatorname {agm} (1,\cos(\theta _{0}/2))}}{\sqrt {\frac {L}{g}}}}
R 3 T 2 = G M 4 π 2 {\displaystyle {\frac {R^{3}}{T^{2}}}={\frac {GM}{4\pi ^{2}}}}
F = π 2 E I L 2 {\displaystyle F={\frac {\pi ^{2}EI}{L^{2}}}}

Un problema que involucra "bolas de billar que chocan":

b N π {\displaystyle \lfloor {b^{N}\pi }\rfloor }

es el número de colisiones realizadas (en condiciones ideales, con elasticidad perfecta y sin fricción) por un objeto de masa m inicialmente en reposo entre una pared fija y otro objeto de masa b 2 N m, cuando es golpeado por el otro objeto. [1]​ (Esto da los dígitos de π en base b hasta N dígitos después del punto de base).

Fórmulas que dan π como resultado

Integrales

n = 1 ( 1 ) n + 1 n 2 = 1 1 2 1 2 2 + 1 3 2 1 4 2 + = π 2 12 {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{2}}}={\frac {1}{1^{2}}}-{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}-{\frac {1}{4^{2}}}+\cdots ={\frac {\pi ^{2}}{12}}}
sech x d x = π {\displaystyle \int _{-\infty }^{\infty }\operatorname {sech} x\,dx=\pi }
2 1 1 1 x 2 d x = π {\displaystyle 2\int _{-1}^{1}{\sqrt {1-x^{2}}}\,dx=\pi } (el doble de la integral de un semicírculo y ( x ) = 1 x 2 {\displaystyle y(x)={\sqrt {1-x^{2}}}} para obtener el área del círculo unitario)
1 1 d x 1 x 2 = π {\displaystyle \int _{-1}^{1}{\frac {dx}{\sqrt {1-x^{2}}}}=\pi }
n = 0 ( 1 2 n + 1 ) 2 = 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + = π 2 8 {\displaystyle \sum _{n=0}^{\infty }\left({\frac {1}{2n+1}}\right)^{2}={\frac {1}{1^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{5^{2}}}+{\frac {1}{7^{2}}}+\cdots ={\frac {\pi ^{2}}{8}}}
d x 1 + x 2 = π {\displaystyle \int _{-\infty }^{\infty }{\frac {dx}{1+x^{2}}}=\pi } [2]​ (véase también distribución de Cauchy )
sin x x d x = π {\displaystyle \int _{-\infty }^{\infty }{\frac {\sin x}{x}}\,dx=\pi } (véase integral de Dirichlet )
d z z = 2 π i {\displaystyle \oint {\frac {dz}{z}}=2\pi i} (cuando el camino de integración gira una vez en sentido antihorario alrededor de 0. Véase también la fórmula integral de Cauchy).
n = 0 ( 1 ) n ( 2 n + 1 ) 2 k + 1 = ( 1 ) k E 2 k 2 ( 2 k ) ! ( π 2 ) 2 k + 1 , k N 0 {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)^{2k+1}}}=(-1)^{k}{\frac {E_{2k}}{2(2k)!}}\left({\frac {\pi }{2}}\right)^{2k+1},\quad k\in \mathbb {N} _{0}}
e x 2 d x = π {\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}\,dx={\sqrt {\pi }}} (véase la integral gaussiana).
n = 0 ( 1 ) ( n 2 n ) / 2 2 n + 1 = 1 + 1 3 1 5 1 7 + 1 9 + 1 11 = π 2 2 {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{(n^{2}-n)/2}}{2n+1}}=1+{\frac {1}{3}}-{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}+{\frac {1}{11}}-\cdots ={\frac {\pi }{2{\sqrt {2}}}}} (Newton, Second Letter to Oldenburg, 1676) [3]
0 ln ( 1 + 1 x 2 ) d x = π {\displaystyle \int _{0}^{\infty }\ln \left(1+{\frac {1}{x^{2}}}\right)\,dx=\pi } [4]
0 d x x ( x + a ) ( x + b ) = π agm ( a , b ) {\displaystyle \int _{0}^{\infty }{\frac {dx}{\sqrt {x(x+a)(x+b)}}}={\frac {\pi }{\operatorname {agm} ({\sqrt {a}},{\sqrt {b}})}}} (donde agm {\displaystyle \operatorname {agm} } es la media aritmético-geométrica; véase también la integral elíptica)

Nótese que los integrandos simétricos f ( x ) = f ( x ) {\displaystyle f(-x)=f(x)} , que tienen la forma a a f ( x ) d x {\textstyle \int _{-a}^{a}f(x)\,dx} también se pueden traducir a la forma 2 0 a f ( x ) d x {\textstyle 2\int _{0}^{a}f(x)\,dx} .

Series infinitas eficientes

n = 0 ( 1 2 n + 1 ) 4 = 1 1 4 + 1 3 4 + 1 5 4 + 1 7 4 + = π 4 96 {\displaystyle \sum _{n=0}^{\infty }\left({\frac {1}{2n+1}}\right)^{4}={\frac {1}{1^{4}}}+{\frac {1}{3^{4}}}+{\frac {1}{5^{4}}}+{\frac {1}{7^{4}}}+\cdots ={\frac {\pi ^{4}}{96}}}
k = 0 k ! ( 2 k + 1 ) ! ! = k = 0 2 k k ! 2 ( 2 k + 1 ) ! = π 2 {\displaystyle \sum _{k=0}^{\infty }{\frac {k!}{(2k+1)!!}}=\sum _{k=0}^{\infty }{\frac {2^{k}k!^{2}}{(2k+1)!}}={\frac {\pi }{2}}} (véase también doble factorial)
n = 0 ( 1 ) n 3 n ( 2 n + 1 ) = 1 1 3 1 3 + 1 3 2 5 1 3 3 7 + 1 3 4 9 = 3 arctan 1 3 = π 2 3 {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{3^{n}(2n+1)}}=1-{\frac {1}{3^{1}\cdot 3}}+{\frac {1}{3^{2}\cdot 5}}-{\frac {1}{3^{3}\cdot 7}}+{\frac {1}{3^{4}\cdot 9}}-\cdots ={\sqrt {3}}\arctan {\frac {1}{\sqrt {3}}}={\frac {\pi }{2{\sqrt {3}}}}} (Serie Madhava )
k = 0 k ! ( 2 k ) ! ( 25 k 3 ) ( 3 k ) ! 2 k = π 2 {\displaystyle \sum _{k=0}^{\infty }{\frac {k!\,(2k)!\,(25k-3)}{(3k)!\,2^{k}}}={\frac {\pi }{2}}}

Las siguientes fórmulas son eficientes para calcular dígitos binarios arbitrarios de π:

n = 0 ( ( 1 ) n 2 n + 1 ) 3 = 1 1 3 1 3 3 + 1 5 3 1 7 3 + = π 3 32 {\displaystyle \sum _{n=0}^{\infty }\left({\frac {(-1)^{n}}{2n+1}}\right)^{3}={\frac {1}{1^{3}}}-{\frac {1}{3^{3}}}+{\frac {1}{5^{3}}}-{\frac {1}{7^{3}}}+\cdots ={\frac {\pi ^{3}}{32}}}
k = 0 ( 1 ) k ( 6 k ) ! ( 13591409 + 545140134 k ) ( 3 k ) ! ( k ! ) 3 640320 3 k = 4270934400 10005 π {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}(6k)!(13591409+545140134k)}{(3k)!(k!)^{3}640320^{3k}}}={\frac {4270934400}{{\sqrt {10005}}\pi }}} (véase el algoritmo de Chudnovsky)
n = 0 ( 1 2 n + 1 ) 6 = 1 1 6 + 1 3 6 + 1 5 6 + 1 7 6 + = π 6 960 {\displaystyle \sum _{n=0}^{\infty }\left({\frac {1}{2n+1}}\right)^{6}={\frac {1}{1^{6}}}+{\frac {1}{3^{6}}}+{\frac {1}{5^{6}}}+{\frac {1}{7^{6}}}+\cdots ={\frac {\pi ^{6}}{960}}}
0 1 x 4 ( 1 x ) 4 1 + x 2 d x = 22 7 π {\displaystyle \int _{0}^{1}{x^{4}(1-x)^{4} \over 1+x^{2}}\,dx={22 \over 7}-\pi } (véase también la prueba de que 22/7 es mayor que π ).

Serie de Plouffe para calcular dígitos decimales arbitrarios de π: [5]

k = 0 ( 4 k ) ! ( 1103 + 26390 k ) ( k ! ) 4 396 4 k = 9801 2 2 π {\displaystyle \sum _{k=0}^{\infty }{\frac {(4k)!(1103+26390k)}{(k!)^{4}396^{4k}}}={\frac {9801}{2{\sqrt {2}}\pi }}} (véase: Srinivasa Ramanujan, serie Ramanujan-Sato)

Otras series infinitas

k = 0 ( 1 ) k 4 k ( 2 4 k + 1 + 2 4 k + 2 + 1 4 k + 3 ) = π {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}}{4^{k}}}\left({\frac {2}{4k+1}}+{\frac {2}{4k+2}}+{\frac {1}{4k+3}}\right)=\pi } [6]
ζ ( 2 ) = 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + = π 2 6 {\displaystyle \zeta (2)={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{4^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}} (ver también problema de Basilea y función zeta de Riemann )
k = 0 ( 1 ) k 2 10 k ( 2 5 4 k + 1 1 4 k + 3 + 2 8 10 k + 1 2 6 10 k + 3 2 2 10 k + 5 2 2 10 k + 7 + 1 10 k + 9 ) = 2 6 π {\displaystyle \sum _{k=0}^{\infty }{\frac {{(-1)}^{k}}{2^{10k}}}\left(-{\frac {2^{5}}{4k+1}}-{\frac {1}{4k+3}}+{\frac {2^{8}}{10k+1}}-{\frac {2^{6}}{10k+3}}-{\frac {2^{2}}{10k+5}}-{\frac {2^{2}}{10k+7}}+{\frac {1}{10k+9}}\right)=2^{6}\pi }
k = 1 k 2 k k ! 2 ( 2 k ) ! = π + 3 {\displaystyle \sum _{k=1}^{\infty }k{\frac {2^{k}k!^{2}}{(2k)!}}=\pi +3}
n = 1 3 n 1 4 n ζ ( n + 1 ) = π {\displaystyle \sum _{n=1}^{\infty }{\frac {3^{n}-1}{4^{n}}}\,\zeta (n+1)=\pi } [7]
n = 2 2 ( 3 / 2 ) n 3 n ( ζ ( n ) 1 ) = ln π {\displaystyle \sum _{n=2}^{\infty }{\frac {2(3/2)^{n}-3}{n}}(\zeta (n)-1)=\ln \pi }
n = 0 ( 1 ) n 2 n + 1 = 1 1 3 + 1 5 1 7 + 1 9 = arctan 1 = π 4 {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{2n+1}}=1-{\frac {1}{3}}+{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}-\cdots =\arctan {1}={\frac {\pi }{4}}} (ver fórmula de Leibniz para pi)
n = 0 ( 1 ) ( n 2 n ) / 2 2 n + 1 = 1 + 1 3 1 5 1 7 + 1 9 + 1 11 = π 2 2 {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{(n^{2}-n)/2}}{2n+1}}=1+{\frac {1}{3}}-{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}+{\frac {1}{11}}-\cdots ={\frac {\pi }{2{\sqrt {2}}}}} (Newton, Second Letter to Oldenburg, 1676) [3]
n = 0 ( 1 ) n 3 n ( 2 n + 1 ) = 1 1 3 1 3 + 1 3 2 5 1 3 3 7 + 1 3 4 9 = 3 arctan 1 3 = π 2 3 {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{3^{n}(2n+1)}}=1-{\frac {1}{3^{1}\cdot 3}}+{\frac {1}{3^{2}\cdot 5}}-{\frac {1}{3^{3}\cdot 7}}+{\frac {1}{3^{4}\cdot 9}}-\cdots ={\sqrt {3}}\arctan {\frac {1}{\sqrt {3}}}={\frac {\pi }{2{\sqrt {3}}}}} ( Serie Madhava )
ζ ( 4 ) = 1 1 4 + 1 2 4 + 1 3 4 + 1 4 4 + = π 4 90 {\displaystyle \zeta (4)={\frac {1}{1^{4}}}+{\frac {1}{2^{4}}}+{\frac {1}{3^{4}}}+{\frac {1}{4^{4}}}+\cdots ={\frac {\pi ^{4}}{90}}}
n = 1 ζ ( 2 n ) x 2 n n = ln π x sin π x , 0 < | x | < 1 {\displaystyle \sum _{n=1}^{\infty }\zeta (2n){\frac {x^{2n}}{n}}=\ln {\frac {\pi x}{\sin \pi x}},\quad 0<|x|<1}
n = 0 ( 1 2 n + 1 ) 2 = 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + = π 2 8 {\displaystyle \sum _{n=0}^{\infty }\left({\frac {1}{2n+1}}\right)^{2}={\frac {1}{1^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{5^{2}}}+{\frac {1}{7^{2}}}+\cdots ={\frac {\pi ^{2}}{8}}}
n = 0 ( ( 1 ) n 2 n + 1 ) 3 = 1 1 3 1 3 3 + 1 5 3 1 7 3 + = π 3 32 {\displaystyle \sum _{n=0}^{\infty }\left({\frac {(-1)^{n}}{2n+1}}\right)^{3}={\frac {1}{1^{3}}}-{\frac {1}{3^{3}}}+{\frac {1}{5^{3}}}-{\frac {1}{7^{3}}}+\cdots ={\frac {\pi ^{3}}{32}}}
n = 0 ( 1 2 n + 1 ) 4 = 1 1 4 + 1 3 4 + 1 5 4 + 1 7 4 + = π 4 96 {\displaystyle \sum _{n=0}^{\infty }\left({\frac {1}{2n+1}}\right)^{4}={\frac {1}{1^{4}}}+{\frac {1}{3^{4}}}+{\frac {1}{5^{4}}}+{\frac {1}{7^{4}}}+\cdots ={\frac {\pi ^{4}}{96}}}
n = 0 ( ( 1 ) n 2 n + 1 ) 5 = 1 1 5 1 3 5 + 1 5 5 1 7 5 + = 5 π 5 1536 {\displaystyle \sum _{n=0}^{\infty }\left({\frac {(-1)^{n}}{2n+1}}\right)^{5}={\frac {1}{1^{5}}}-{\frac {1}{3^{5}}}+{\frac {1}{5^{5}}}-{\frac {1}{7^{5}}}+\cdots ={\frac {5\pi ^{5}}{1536}}}
n = 0 ( 1 2 n + 1 ) 6 = 1 1 6 + 1 3 6 + 1 5 6 + 1 7 6 + = π 6 960 {\displaystyle \sum _{n=0}^{\infty }\left({\frac {1}{2n+1}}\right)^{6}={\frac {1}{1^{6}}}+{\frac {1}{3^{6}}}+{\frac {1}{5^{6}}}+{\frac {1}{7^{6}}}+\cdots ={\frac {\pi ^{6}}{960}}}

En general,

n = 0 ( 1 ) n ( 2 n + 1 ) 2 k + 1 = ( 1 ) k E 2 k 2 ( 2 k ) ! ( π 2 ) 2 k + 1 , k N 0 {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)^{2k+1}}}=(-1)^{k}{\frac {E_{2k}}{2(2k)!}}\left({\frac {\pi }{2}}\right)^{2k+1},\quad k\in \mathbb {N} _{0}}

donde E 2 k {\displaystyle E_{2k}} es el número de Euler 2 k {\displaystyle 2k} . [8]

n = 0 ( 1 2 n ) ( 1 ) n 2 n + 1 = 1 1 6 1 40 = π 4 {\displaystyle \sum _{n=0}^{\infty }{\binom {\frac {1}{2}}{n}}{\frac {(-1)^{n}}{2n+1}}=1-{\frac {1}{6}}-{\frac {1}{40}}-\cdots ={\frac {\pi }{4}}}
n = 0 1 ( 4 n + 1 ) ( 4 n + 3 ) = 1 1 3 + 1 5 7 + 1 9 11 + = π 8 {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{(4n+1)(4n+3)}}={\frac {1}{1\cdot 3}}+{\frac {1}{5\cdot 7}}+{\frac {1}{9\cdot 11}}+\cdots ={\frac {\pi }{8}}}
n = 1 ( 1 ) ( n 2 + n ) / 2 + 1 | G ( ( 1 ) n + 1 + 6 n 3 ) / 4 | = | G 1 | + | G 2 | | G 4 | | G 5 | + | G 7 | + | G 8 | | G 10 | | G 11 | + = 3 π {\displaystyle \sum _{n=1}^{\infty }(-1)^{(n^{2}+n)/2+1}\left|G_{\left((-1)^{n+1}+6n-3\right)/4}\right|=|G_{1}|+|G_{2}|-|G_{4}|-|G_{5}|+|G_{7}|+|G_{8}|-|G_{10}|-|G_{11}|+\cdots ={\frac {\sqrt {3}}{\pi }}} (ver coeficientes de Gregory)
n = 0 ( 1 / 2 ) n 2 2 n n ! 2 n = 0 n ( 1 / 2 ) n 2 2 n n ! 2 = 1 π {\displaystyle \sum _{n=0}^{\infty }{\frac {(1/2)_{n}^{2}}{2^{n}n!^{2}}}\sum _{n=0}^{\infty }{\frac {n(1/2)_{n}^{2}}{2^{n}n!^{2}}}={\frac {1}{\pi }}} (donde ( x ) n {\displaystyle (x)_{n}} es el factorial ascendente) [9]
n = 1 ( 1 ) n + 1 n ( n + 1 ) ( 2 n + 1 ) = π 3 {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n(n+1)(2n+1)}}=\pi -3} (Serie Nilakantha )
n = 1 F 2 n n 2 ( 2 n n ) = 4 π 2 25 5 {\displaystyle \sum _{n=1}^{\infty }{\frac {F_{2n}}{n^{2}{\binom {2n}{n}}}}={\frac {4\pi ^{2}}{25{\sqrt {5}}}}} (dónde F n {\displaystyle F_{n}} es el enésimo número de Fibonacci )
n = 1 σ ( n ) e 2 π n = 1 24 1 8 π {\displaystyle \sum _{n=1}^{\infty }\sigma (n)e^{-2\pi n}={\frac {1}{24}}-{\frac {1}{8\pi }}} (dónde σ {\displaystyle \sigma } es la función de suma de divisores )
π = n = 1 ( 1 ) ϵ ( n ) n = 1 + 1 2 + 1 3 + 1 4 1 5 + 1 6 + 1 7 + 1 8 + 1 9 1 10 + 1 11 + 1 12 1 13 + {\displaystyle \pi =\sum _{n=1}^{\infty }{\frac {(-1)^{\epsilon (n)}}{n}}=1+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{4}}-{\frac {1}{5}}+{\frac {1}{6}}+{\frac {1}{7}}+{\frac {1}{8}}+{\frac {1}{9}}-{\frac {1}{10}}+{\frac {1}{11}}+{\frac {1}{12}}-{\frac {1}{13}}+\cdots } (donde ϵ ( n ) {\displaystyle \epsilon (n)} es el número de factores primos de la forma p 1 ( m o d 4 ) {\displaystyle p\equiv 1\,(\mathrm {mod} \,4)} de n {\displaystyle n} ) [10][11]
π 2 = n = 1 ( 1 ) ε ( n ) n = 1 + 1 2 1 3 + 1 4 + 1 5 1 6 1 7 + 1 8 + 1 9 + {\displaystyle {\frac {\pi }{2}}=\sum _{n=1}^{\infty }{\frac {(-1)^{\varepsilon (n)}}{n}}=1+{\frac {1}{2}}-{\frac {1}{3}}+{\frac {1}{4}}+{\frac {1}{5}}-{\frac {1}{6}}-{\frac {1}{7}}+{\frac {1}{8}}+{\frac {1}{9}}+\cdots } (donde ε ( n ) {\displaystyle \varepsilon (n)} es el número de factores primos de la forma p 3 ( m o d 4 ) {\displaystyle p\equiv 3\,(\mathrm {mod} \,4)} de n {\displaystyle n} ) [12]
π = n = ( 1 ) n n + 1 / 2 {\displaystyle \pi =\sum _{n=-\infty }^{\infty }{\frac {(-1)^{n}}{n+1/2}}}
π 2 = n = 1 ( n + 1 / 2 ) 2 {\displaystyle \pi ^{2}=\sum _{n=-\infty }^{\infty }{\frac {1}{(n+1/2)^{2}}}} [13]

Las dos últimas fórmulas son casos especiales de

π sin π x = n = ( 1 ) n n + x ( π sin π x ) 2 = n = 1 ( n + x ) 2 {\displaystyle {\begin{aligned}{\frac {\pi }{\sin \pi x}}&=\sum _{n=-\infty }^{\infty }{\frac {(-1)^{n}}{n+x}}\\\left({\frac {\pi }{\sin \pi x}}\right)^{2}&=\sum _{n=-\infty }^{\infty }{\frac {1}{(n+x)^{2}}}\end{aligned}}}

que generan infinitas fórmulas análogas para π {\displaystyle \pi } cuando x Q Z . {\displaystyle x\in \mathbb {Q} \setminus \mathbb {Z} .}

Algunas fórmulas que relacionan π y números armónicos se pueden ver aquí. Otras series infinitas que contienen a π son: [14]

π = 1 Z {\displaystyle \pi ={\frac {1}{Z}}} Z = n = 0 ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}}
π = 4 Z {\displaystyle \pi ={\frac {4}{Z}}} Z = n = 0 ( 1 ) n ( 4 n ) ! ( 21460 n + 1123 ) ( n ! ) 4 441 2 n + 1 2 10 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(21460n+1123)}{(n!)^{4}{441}^{2n+1}{2}^{10n+1}}}}
π = 4 Z {\displaystyle \pi ={\frac {4}{Z}}} Z = n = 0 ( 6 n + 1 ) ( 1 2 ) n 3 4 n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(6n+1)\left({\frac {1}{2}}\right)_{n}^{3}}{{4^{n}}(n!)^{3}}}}
π = 32 Z {\displaystyle \pi ={\frac {32}{Z}}} Z = n = 0 ( 5 1 2 ) 8 n ( 42 n 5 + 30 n + 5 5 1 ) ( 1 2 ) n 3 64 n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {{\sqrt {5}}-1}{2}}\right)^{8n}{\frac {(42n{\sqrt {5}}+30n+5{\sqrt {5}}-1)\left({\frac {1}{2}}\right)_{n}^{3}}{{64^{n}}(n!)^{3}}}}
π = 27 4 Z {\displaystyle \pi ={\frac {27}{4Z}}} Z = n = 0 ( 2 27 ) n ( 15 n + 2 ) ( 1 2 ) n ( 1 3 ) n ( 2 3 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {2}{27}}\right)^{n}{\frac {(15n+2)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{3}}\right)_{n}\left({\frac {2}{3}}\right)_{n}}{(n!)^{3}}}}
π = 15 3 2 Z {\displaystyle \pi ={\frac {15{\sqrt {3}}}{2Z}}} Z = n = 0 ( 4 125 ) n ( 33 n + 4 ) ( 1 2 ) n ( 1 3 ) n ( 2 3 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{125}}\right)^{n}{\frac {(33n+4)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{3}}\right)_{n}\left({\frac {2}{3}}\right)_{n}}{(n!)^{3}}}}
π = 85 85 18 3 Z {\displaystyle \pi ={\frac {85{\sqrt {85}}}{18{\sqrt {3}}Z}}} Z = n = 0 ( 4 85 ) n ( 133 n + 8 ) ( 1 2 ) n ( 1 6 ) n ( 5 6 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{85}}\right)^{n}{\frac {(133n+8)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{6}}\right)_{n}\left({\frac {5}{6}}\right)_{n}}{(n!)^{3}}}}
π = 5 5 2 3 Z {\displaystyle \pi ={\frac {5{\sqrt {5}}}{2{\sqrt {3}}Z}}} Z = n = 0 ( 4 125 ) n ( 11 n + 1 ) ( 1 2 ) n ( 1 6 ) n ( 5 6 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{125}}\right)^{n}{\frac {(11n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{6}}\right)_{n}\left({\frac {5}{6}}\right)_{n}}{(n!)^{3}}}}
π = 2 3 Z {\displaystyle \pi ={\frac {2{\sqrt {3}}}{Z}}} Z = n = 0 ( 8 n + 1 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 9 n {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(8n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{9}^{n}}}}
π = 3 9 Z {\displaystyle \pi ={\frac {\sqrt {3}}{9Z}}} Z = n = 0 ( 40 n + 3 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 49 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(40n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{49}^{2n+1}}}}
π = 2 11 11 Z {\displaystyle \pi ={\frac {2{\sqrt {11}}}{11Z}}} Z = n = 0 ( 280 n + 19 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 99 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(280n+19)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{99}^{2n+1}}}}
π = 2 4 Z {\displaystyle \pi ={\frac {\sqrt {2}}{4Z}}} Z = n = 0 ( 10 n + 1 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 9 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(10n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{9}^{2n+1}}}}
π = 4 5 5 Z {\displaystyle \pi ={\frac {4{\sqrt {5}}}{5Z}}} Z = n = 0 ( 644 n + 41 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 5 n 72 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(644n+41)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}5^{n}{72}^{2n+1}}}}
π = 4 3 3 Z {\displaystyle \pi ={\frac {4{\sqrt {3}}}{3Z}}} Z = n = 0 ( 1 ) n ( 28 n + 3 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 3 n 4 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(28n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{3^{n}}{4}^{n+1}}}}
π = 4 Z {\displaystyle \pi ={\frac {4}{Z}}} Z = n = 0 ( 1 ) n ( 20 n + 3 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 2 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(20n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{2}^{2n+1}}}}
π = 72 Z {\displaystyle \pi ={\frac {72}{Z}}} Z = n = 0 ( 1 ) n ( 4 n ) ! ( 260 n + 23 ) ( n ! ) 4 4 4 n 18 2 n {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(260n+23)}{(n!)^{4}4^{4n}18^{2n}}}}
π = 3528 Z {\displaystyle \pi ={\frac {3528}{Z}}} Z = n = 0 ( 1 ) n ( 4 n ) ! ( 21460 n + 1123 ) ( n ! ) 4 4 4 n 882 2 n {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(21460n+1123)}{(n!)^{4}4^{4n}882^{2n}}}}

donde ( x ) n {\displaystyle (x)_{n}} es el símbolo de Pochhammer para el factorial ascendente. Véase también Serie Ramanujan-Sato.

Fórmulas tipo Machin

Artículo principal: Fórmulas de Machin
π 4 = arctan 1 {\displaystyle {\frac {\pi }{4}}=\arctan 1}
π 4 = 4 arctan 1 5 arctan 1 239 {\displaystyle {\frac {\pi }{4}}=4\arctan {\frac {1}{5}}-\arctan {\frac {1}{239}}} (la fórmula original de Machin)
π 4 = 5 arctan 1 7 + 2 arctan 3 79 {\displaystyle {\frac {\pi }{4}}=5\arctan {\frac {1}{7}}+2\arctan {\frac {3}{79}}}
π 4 = 6 arctan 1 8 + 2 arctan 1 57 + arctan 1 239 {\displaystyle {\frac {\pi }{4}}=6\arctan {\frac {1}{8}}+2\arctan {\frac {1}{57}}+\arctan {\frac {1}{239}}}
π 4 = 12 arctan 1 49 + 32 arctan 1 57 5 arctan 1 239 + 12 arctan 1 110443 {\displaystyle {\frac {\pi }{4}}=12\arctan {\frac {1}{49}}+32\arctan {\frac {1}{57}}-5\arctan {\frac {1}{239}}+12\arctan {\frac {1}{110443}}}
π 4 = 44 arctan 1 57 + 7 arctan 1 239 12 arctan 1 682 + 24 arctan 1 12943 {\displaystyle {\frac {\pi }{4}}=44\arctan {\frac {1}{57}}+7\arctan {\frac {1}{239}}-12\arctan {\frac {1}{682}}+24\arctan {\frac {1}{12943}}}

Productos infinitos

π 4 = ( p 1 ( mod 4 ) p p 1 ) ( p 3 ( mod 4 ) p p + 1 ) = 3 4 5 4 7 8 11 12 13 12 , {\displaystyle {\frac {\pi }{4}}=\left(\prod _{p\equiv 1{\pmod {4}}}{\frac {p}{p-1}}\right)\cdot \left(\prod _{p\equiv 3{\pmod {4}}}{\frac {p}{p+1}}\right)={\frac {3}{4}}\cdot {\frac {5}{4}}\cdot {\frac {7}{8}}\cdot {\frac {11}{12}}\cdot {\frac {13}{12}}\cdots ,} (Euler)
Donde los numeradores son los números primos impares; cada denominador es el múltiplo de cuatro más cerca del numerador.

Fórmulas arcotangentes

π 2 k + 1 = arctan 2 a k 1 a k , k 2 {\displaystyle {\frac {\pi }{2^{k+1}}}=\arctan {\frac {\sqrt {2-a_{k-1}}}{a_{k}}},\qquad \qquad k\geq 2}
π 4 = k 2 arctan 2 a k 1 a k , {\displaystyle {\frac {\pi }{4}}=\sum _{k\geq 2}\arctan {\frac {\sqrt {2-a_{k-1}}}{a_{k}}},}

donde a k = 2 + a k 1 {\displaystyle a_{k}={\sqrt {2+a_{k-1}}}} tal que a 1 = 2 {\displaystyle a_{1}={\sqrt {2}}} .

π 2 = k = 0 arctan 1 F 2 k + 1 = arctan 1 1 + arctan 1 2 + arctan 1 5 + arctan 1 13 + {\displaystyle {\frac {\pi }{2}}=\sum _{k=0}^{\infty }\arctan {\frac {1}{F_{2k+1}}}=\arctan {\frac {1}{1}}+\arctan {\frac {1}{2}}+\arctan {\frac {1}{5}}+\arctan {\frac {1}{13}}+\cdots }

donde F k {\displaystyle F_{k}} es el k-ésimo número de Fibonacci.

π = arctan a + arctan b + arctan c {\displaystyle \pi =\arctan a+\arctan b+\arctan c}

cuando a + b + c = a b c {\displaystyle a+b+c=abc} y a {\displaystyle a} , b {\displaystyle b} , c {\displaystyle c} son números reales positivos (see Identidades trigonométricas). Un caso especial es:

π = arctan 1 + arctan 2 + arctan 3. {\displaystyle \pi =\arctan 1+\arctan 2+\arctan 3.}

Funciones complejas

e i π + 1 = 0 {\displaystyle e^{i\pi }+1=0} (Identidad de Euler)

Las siguientes equivalencias son verdaderas para cualquier número complejo z {\displaystyle z} :

e z R z π Z {\displaystyle e^{z}\in \mathbb {R} \leftrightarrow \Im z\in \pi \mathbb {Z} }
e z = 1 z 2 π i Z {\displaystyle e^{z}=1\leftrightarrow z\in 2\pi i\mathbb {Z} } [15]

Además

1 e z 1 = lim N n = N N 1 z 2 π i n 1 2 , z C . {\displaystyle {\frac {1}{e^{z}-1}}=\lim _{N\to \infty }\sum _{n=-N}^{N}{\frac {1}{z-2\pi in}}-{\frac {1}{2}},\quad z\in \mathbb {C} .}

Suponemos que una red Ω {\displaystyle \Omega } es generada por dos períodos ω 1 , ω 2 {\displaystyle \omega _{1},\omega _{2}} . Definimos los quasi-periodos de esta red con η 1 = ζ ( z + ω 1 ; Ω ) ζ ( z ; Ω ) {\displaystyle \eta _{1}=\zeta (z+\omega _{1};\Omega )-\zeta (z;\Omega )} y η 2 = ζ ( z + ω 2 ; Ω ) ζ ( z ; Ω ) {\displaystyle \eta _{2}=\zeta (z+\omega _{2};\Omega )-\zeta (z;\Omega )} donde ζ {\displaystyle \zeta } es la función zeta de Weierstrass ( η 1 {\displaystyle \eta _{1}} y η 2 {\displaystyle \eta _{2}} son independientes de z {\displaystyle z} ). Entonces los periodos y quasi-periodos son relacionados con la identidad de Legendre:

η 1 ω 2 η 2 ω 1 = 2 π i . {\displaystyle \eta _{1}\omega _{2}-\eta _{2}\omega _{1}=2\pi i.}

Fracciones continuas

4 π = 1 + 1 2 2 + 3 2 2 + 5 2 2 + 7 2 2 + {\displaystyle {\frac {4}{\pi }}=1+{\cfrac {1^{2}}{2+{\cfrac {3^{2}}{2+{\cfrac {5^{2}}{2+{\cfrac {7^{2}}{2+\ddots }}}}}}}}} [16]
ϖ 2 π = 2 + 1 2 4 + 3 2 4 + 5 2 4 + 7 2 4 + {\displaystyle {\frac {\varpi ^{2}}{\pi }}={2+{\cfrac {1^{2}}{4+{\cfrac {3^{2}}{4+{\cfrac {5^{2}}{4+{\cfrac {7^{2}}{4+\ddots \,}}}}}}}}}\quad } (Ramanujan, ϖ {\displaystyle \varpi } es la constante de la lemniscata)
π = 3 + 1 2 6 + 3 2 6 + 5 2 6 + 7 2 6 + {\displaystyle \pi ={3+{\cfrac {1^{2}}{6+{\cfrac {3^{2}}{6+{\cfrac {5^{2}}{6+{\cfrac {7^{2}}{6+\ddots \,}}}}}}}}}} [16]
π = 4 1 + 1 2 3 + 2 2 5 + 3 2 7 + 4 2 9 + {\displaystyle \pi ={\cfrac {4}{1+{\cfrac {1^{2}}{3+{\cfrac {2^{2}}{5+{\cfrac {3^{2}}{7+{\cfrac {4^{2}}{9+\ddots }}}}}}}}}}}
2 π = 6 + 2 2 12 + 6 2 12 + 10 2 12 + 14 2 12 + 18 2 12 + {\displaystyle 2\pi ={6+{\cfrac {2^{2}}{12+{\cfrac {6^{2}}{12+{\cfrac {10^{2}}{12+{\cfrac {14^{2}}{12+{\cfrac {18^{2}}{12+\ddots }}}}}}}}}}}}

Para más información sobre la cuarta fórmula, véase: Fracción continua de Euler.

Algoritmos iterativos

Asintóticas

Inversiones hipergeométricas

Misceláneas

Véase también

Referencias

Notas

  1. La relación μ 0 = 4 π 10 7 N / A 2 {\displaystyle \mu _{0}=4\pi \cdot 10^{-7}\,\mathrm {N} /\mathrm {A} ^{2}} se consideraba válida hasta la redefinición de las unidades del SI en el 2019.

Otro

  1. Galperin, G. (2003). «Playing pool with π (the number π from a billiard point of view)». Regular and Chaotic Dynamics 8 (4): 375-394. doi:10.1070/RD2003v008n04ABEH000252. 
  2. Rudin, Walter (1987). Real and Complex Analysis (Third edición). McGraw-Hill Book Company. ISBN 0-07-100276-6.  p. 4
  3. a b Chrystal, G. (1900). Algebra, an Elementary Text-book: Part II. p. 335. 
  4. A000796 – OEIS
  5. Gourdon, Xavier. «Computation of the n-th decimal digit of π with low memory». Numbers, constants and computation. 
  6. Arndt, Jörg; Haenel, Christoph (2001). π Unleashed. Springer-Verlag Berlin Heidelberg. ISBN 978-3-540-66572-4.  page 126
  7. Weisstein, Eric W. "Pi Formulas", MathWorld
  8. Eymard, Pierre; Lafon, Jean-Pierre (2004). The Number Pi. American Mathematical Society. ISBN 0-8218-3246-8.  p. 112
  9. Cooper, Shaun (2017). Ramanujan's Theta Functions (First edición). Springer. ISBN 978-3-319-56171-4.  (page 647)
  10. Euler, Leonhard (1748). Introductio in analysin infinitorum (en latin) 1.  p. 245
  11. Carl B. Boyer, A History of Mathematics, Chapter 21., pp. 488–489
  12. Euler, Leonhard (1748). Introductio in analysin infinitorum (en latin) 1.  p. 244
  13. Wästlund, Johan. «Summing inverse squares by euclidean geometry».  The paper gives the formula with a minus sign instead, but these results are equivalent.
  14. Simon Plouffe / David Bailey. «The world of Pi». Pi314.net. Consultado el 29 de enero de 2011. 

    «Collection of series for π». Numbers.computation.free.fr. Consultado el 29 de enero de 2011. 
  15. Rudin, Walter (1987). Real and Complex Analysis (Third edición). McGraw-Hill Book Company. ISBN 0-07-100276-6.  p. 3
  16. a b Amazing and aesthetic aspects of analysis. Springer Berlin Heidelberg. 2017. p. 589. ISBN 978-1-4939-6793-3.  |fechaacceso= requiere |url= (ayuda)
  • Tóth, László (2020), «Transcendental Infinite Products Associated with the +-1 Thue-Morse Sequence», Journal of Integer Sequences 23: 20.8.2 ..

Otras lecturas

En inglés:

  • Borwein, Peter (2000). «The amazing number π». Nieuw Archief voor Wiskunde. 5th series 1 (3): 254-258. 
  • Kazuya Kato, Nobushige Kurokawa, Saito Takeshi: Number Theory 1: Fermat's Dream. American Mathematical Society, Providence 1993, ISBN 0-8218-0863-X.