Poisson-folyamat

A Poisson-folyamat egy sztochasztikus folyamat, mely események számát és időközeit modellezi. A Poisson-folyamat olyan számláló folyamat, melynél a T1, T2, . . . érkezések közötti idők exponenciális eloszlású független valószínűségi változók. A folyamatot Siméon-Denis Poisson francia matematikusról nevezték el, és többek között alkalmas a radioaktív bomlás, telefonhívások és webszerverek terhelésének modellezésére.[1][2][3] A Poisson-folyamat időben folytonos, és a Bernoulli-folyamat ellenpárjának tekinthető, mely diszkrét folyamat. A Poisson-folyamat egy tiszta születési folyamat, mely a születés-halálozás folyamat legegyszerűbb példája.

Meghatározás

A Poisson-folyamat alapfolyamata egy időben folytonos számláló folyamat {N(t), t ≥ 0}, a következő tulajdonságokkal:

  • N(0) = 0
  • Egymástól független növekmények jellemzik
  • Stacionárius növekmények (bármely időközben az előfordulások számának eloszlása csak az időközök hosszától függ).
  • Nincsenek szimultán események

A fentiek következtében:

Típusok

Homogén folyamat

A homogén Poisson-folyamat egy Lévy-folyamat. Ezt a folyamatot egy λ paraméter jellemzi (intenzitás), és bármely (tt + τ] időközben a bekövetkező események száma λτ paraméterű Poisson-eloszlást követ:

P [ ( N ( t + τ ) N ( t ) ) = k ] = e λ τ ( λ τ ) k k ! k = 0 , 1 , , {\displaystyle P[(N(t+\tau )-N(t))=k]={\frac {e^{-\lambda \tau }(\lambda \tau )^{k}}{k!}}\qquad k=0,1,\ldots ,}

ahol N(t + τ) - N(t) = k a (tt + τ] időközben bekövetkező események száma. Amíg a Poisson-féle valószínűségi változót az λ skalár paraméter jellemzi, a homogén Poisson-folyamatot a λ gyakoriság paraméter, mely az egységnyi idő alatt bekövetkező események várható száma. N(t) a mintavételes Poisson-folyamat, ami nem összetévesztendő a sűrűségfüggvénnyel vagy az eloszlásfüggvénnyel.

Inhomogén folyamat

Ha a λ paraméter időben változhat, akkor inhomogén Poisson-folyamatról beszélünk. Az általános gyakorisági függvény λ(t). Az a és b idők között várható események száma:

λ a , b = a b λ ( t ) d t . {\displaystyle \lambda _{a,b}=\int _{a}^{b}\lambda (t)\,dt.}

így az (ab] időintervallumban az érekzések száma N(b) - N(a) Poisson-eloszlású, a kapcsolódó λa,b paraméterrel:

P [ ( N ( b ) N ( a ) ) = k ] = e λ a , b ( λ a , b ) k k ! k = 0 , 1 , . {\displaystyle P[(N(b)-N(a))=k]={\frac {e^{-\lambda _{a,b}}(\lambda _{a,b})^{k}}{k!}}\qquad k=0,1,\ldots .}

Az λ(t) az inhomogén Poisson-folyamatban az idő determinisztikus függvénye, vagy egy független sztochasztikus folyamat, mely a Cox-folyamathoz vezet. A homogén Poisson-folyamat úgy is tekinthető, ahol λ(t) = λ, egy konstans gyakoriság.

Térbeli folyamat

A térbeli (többdimenziós) változat az egydimenziós folyamattól a változók indexében változik. Több dimenzióban az index változó egy vektor térben (V) van. A vektor térben átlapolás mentes véges alrégiókban történnek az események, melyeknek Poisson-eloszlásuk van, és egymástól függetlenek.

Téridő folyamat

Ez egy további változat a Poisson-folyamatra, amikor a tér és idő változókat egymástól külön kezeli. Ez felfogható úgy is, mint egy térbeli folyamat, ahol az idő is a vektortér egy komponense.

Jellemzés

A Poisson-folyamatra két feltétel igaz:

  • Szabályosság, azaz az érkezések nem egyszerre (nem szimultán) történnek:
lim Δ t 0 P ( N ( t + Δ t ) N ( t ) > 1 N ( t + Δ t ) N ( t ) 1 ) = 0 {\displaystyle \lim _{\Delta t\to 0}P(N(t+\Delta t)-N(t)>1\mid N(t+\Delta t)-N(t)\geq 1)=0}
    • Memória-mentesség, illetve Örökifjú tulajdonság, azaz az egymás utáni beérkezési események függetlenek, és egy t időbeli eseményt nem befolyásol a t idő előtti bármely esemény.

Ez azt is jelenti, hogy a Poisson-folyamatnál az egymást követő események közötti intervallumok függetlenek az események számától is. A homogén Poisson-folyamatnál ezek az esemény közötti idők exponenciális eloszlásúak, λ paraméterrel.

Alkalmazások

  • Telefonhívások beérkezése
  • Labdarúgó meccseken előforduló gólok[4]
  • Webszerverekhez beérkező kérelmek[3]
  • Részecske-emisszió radioaktív bomláskor (inhomogén Poisson-folyamat)
  • Sorbanállás-elméletnél az ügyfelek-kiszolgálók sorbanállása sokszor Poisson-folyamat.[5]

A Palm–Khintchine-elmélet szerint sok alacsony intenzitású nem Poisson-féle pont folyamat igen közeli a Poisson-folyamathoz.

Irodalom

  • Ross, S. M: Stochastic Processes. (hely nélkül): Wiley. 1995. ISBN 978-0-471-12062-9  

Kapcsolódó szócikkek

Források

  1. doi:10.1016/0020-708X(78)90101-1
  2. doi:10.1109/MCOM.2009.4804392
  3. a b doi:10.1109/90.649565
  4. doi:10.1209/0295-5075/89/38007
  5. Sundarapandian, V: Queueing Theory. Probability, Statistics and Queueing Theory.. . PHI Learning. 2009. ISBN 8120338448