Serie teleskopiko

Matematikan, serie teleskopiko bat serie bat da non batura partzialek termino-kopuru finko bat duten ezeztatu ondoren.

( a 2 a 1 ) + ( a 3 a 2 ) + ( a 4 a 3 ) + + ( a n a n 1 ) = a n a 1 {\displaystyle (a_{2}-a_{1})+(a_{3}-a_{2})+(a_{4}-a_{3})+\ldots +(a_{n}-a_{n-1})=a_{n}-a_{1}\,}

Serie teleskopikoaren ohiko adibide bat Mengoliren seriea da, honela definitzen dena:

n = 1 1 n ( n + 1 ) {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n(n+1)}}}

honela kalkula daitekeena:[1]

n = 1 1 n ( n + 1 ) = n = 1 ( 1 n 1 n + 1 ) = lim N n = 1 N ( 1 n 1 n + 1 ) = lim N [ ( 1 1 2 ) + ( 1 2 1 3 ) + + ( 1 N 1 N + 1 ) ] = lim N [ 1 + ( 1 2 + 1 2 ) + ( 1 3 + 1 3 ) + + ( 1 N + 1 N ) 1 N + 1 ] = lim N [ 1 1 N + 1 ] = 1. {\displaystyle {\begin{aligned}\sum _{n=1}^{\infty }{\frac {1}{n(n+1)}}&{}=\sum _{n=1}^{\infty }\left({\frac {1}{n}}-{\frac {1}{n+1}}\right)\\{}&{}=\lim _{N\to \infty }\sum _{n=1}^{N}\left({\frac {1}{n}}-{\frac {1}{n+1}}\right)\\{}&{}=\lim _{N\to \infty }\left\lbrack {\left(1-{\frac {1}{2}}\right)+\left({\frac {1}{2}}-{\frac {1}{3}}\right)+\cdots +\left({\frac {1}{N}}-{\frac {1}{N+1}}\right)}\right\rbrack \\{}&{}=\lim _{N\to \infty }\left\lbrack {1+\left(-{\frac {1}{2}}+{\frac {1}{2}}\right)+\left(-{\frac {1}{3}}+{\frac {1}{3}}\right)+\cdots +\left(-{\frac {1}{N}}+{\frac {1}{N}}\right)-{\frac {1}{N+1}}}\right\rbrack \\{}&{}=\lim _{N\to \infty }\left\lbrack {1-{\frac {1}{N+1}}}\right\rbrack =1.\end{aligned}}}

Oro har

Izan bedi zenbaki-sekuentzia bat a n {\displaystyle a_{n}} . Orduan,

n = 1 N ( a n a n 1 ) = a N a 0 , {\displaystyle \sum _{n=1}^{N}\left(a_{n}-a_{n-1}\right)=a_{N}-a_{0},}

eta, baldin a n 0 {\displaystyle a_{n}\rightarrow 0}

n = 1 ( a n a n 1 ) = a 0 . {\displaystyle \sum _{n=1}^{\infty }\left(a_{n}-a_{n-1}\right)=-a_{0}.}

Salbuespenak

Serie teleskopikoak teknika erabilgarria izan daitezkeen arren, eragozpen batzuk izan daitezke. Honako prozedura

0 = n = 1 0 = n = 1 ( 1 1 ) = 1 + n = 1 ( 1 + 1 ) = 1 {\displaystyle 0=\sum _{n=1}^{\infty }0=\sum _{n=1}^{\infty }(1-1)=1+\sum _{n=1}^{\infty }(-1+1)=1\,}

ez da zuzena, zeren eta terminoak multzokatzeko modu horrek balioa izateko, terminoak bereizita 0 balioa izan behar du. Akats hori saihesteko, lehenik eta behin, lehenengo N terminoen batura aurkitu behar da, eta, bigarrenik, N-rekiko limitea aplikatu, infiniturantz hurbilduz.

n = 1 N 1 n ( n + 1 ) = n = 1 N ( 1 n 1 n + 1 ) = ( 1 1 2 ) + ( 1 2 1 3 ) + + ( 1 N 1 N + 1 ) = 1 + ( 1 2 + 1 2 ) + ( 1 3 + 1 3 ) + + ( 1 N + 1 N ) 1 N + 1 = 1 1 N + 1 1   c u a n d o   N . {\displaystyle {\begin{aligned}\sum _{n=1}^{N}{\frac {1}{n(n+1)}}&{}=\sum _{n=1}^{N}\left({\frac {1}{n}}-{\frac {1}{n+1}}\right)\\&{}=\left(1-{\frac {1}{2}}\right)+\left({\frac {1}{2}}-{\frac {1}{3}}\right)+\cdots +\left({\frac {1}{N}}-{\frac {1}{N+1}}\right)\\&{}=1+\left(-{\frac {1}{2}}+{\frac {1}{2}}\right)+\left(-{\frac {1}{3}}+{\frac {1}{3}}\right)+\cdots +\left(-{\frac {1}{N}}+{\frac {1}{N}}\right)-{\frac {1}{N+1}}\\&{}=1-{\frac {1}{N+1}}\to 1\ \mathrm {cuando} \ N\to \infty .\end{aligned}}}

Adibideak

  • Funtzio trigonometriko asko ezberdintasun gisa adieraz daitezke, eta, horri esker, serie teleskopikoan elkarren segidako terminoen arteko deuseztapena egin daiteke.
n = 1 N sen ( n ) = n = 1 N 1 2 csc ( 1 2 ) ( 2 sen ( 1 2 ) sen ( n ) ) = 1 2 csc ( 1 2 ) n = 1 N ( cos ( 2 n 1 2 ) cos ( 2 n + 1 2 ) ) = 1 2 csc ( 1 2 ) ( cos ( 1 2 ) cos ( 2 N + 1 2 ) ) . {\displaystyle {\begin{aligned}\sum _{n=1}^{N}\operatorname {sen} \left(n\right)&{}=\sum _{n=1}^{N}{\frac {1}{2}}\csc \left({\frac {1}{2}}\right)\left(2\operatorname {sen} \left({\frac {1}{2}}\right)\operatorname {sen} \left(n\right)\right)\\&{}={\frac {1}{2}}\csc \left({\frac {1}{2}}\right)\sum _{n=1}^{N}\left(\cos \left({\frac {2n-1}{2}}\right)-\cos \left({\frac {2n+1}{2}}\right)\right)\\&{}={\frac {1}{2}}\csc \left({\frac {1}{2}}\right)\left(\cos \left({\frac {1}{2}}\right)-\cos \left({\frac {2N+1}{2}}\right)\right).\end{aligned}}}
  • Forma honetako batuketa batzuk
n = 1 N f ( n ) g ( n ) , {\displaystyle \sum _{n=1}^{N}{f(n) \over g(n)},}
non f eta g funtzio polinomikoak baitira eta horien zatidura zati partzialetan bereiz baitaiteke, ez dute onartzen metodo horren bidez batuketarik egitea. Zehazki,
n = 0 2 n + 3 ( n + 1 ) ( n + 2 ) = n = 0 ( 1 n + 1 + 1 n + 2 ) = ( 1 1 + 1 2 ) + ( 1 2 + 1 3 ) + ( 1 3 + 1 4 ) + + ( 1 n 1 + 1 n ) + ( 1 n + 1 n + 1 ) + ( 1 n + 1 + 1 n + 2 ) + = . {\displaystyle {\begin{aligned}\sum _{n=0}^{\infty }{\frac {2n+3}{(n+1)(n+2)}}&{}=\sum _{n=0}^{\infty }\left({\frac {1}{n+1}}+{\frac {1}{n+2}}\right)\\&{}=\left({\frac {1}{1}}+{\frac {1}{2}}\right)+\left({\frac {1}{2}}+{\frac {1}{3}}\right)+\left({\frac {1}{3}}+{\frac {1}{4}}\right)+\cdots \\&{}\cdots +\left({\frac {1}{n-1}}+{\frac {1}{n}}\right)+\left({\frac {1}{n}}+{\frac {1}{n+1}}\right)+\left({\frac {1}{n+1}}+{\frac {1}{n+2}}\right)+\cdots \\&{}=\infty .\end{aligned}}}
Kontua da terminoak ez direla ezeztatzen.
  • Izan bedi k zenbaki oso positibo bat. Orduan,
n = 1 1 n ( n + k ) = H k k , {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n(n+k)}}={\frac {H_{k}}{k}},}
non Hk baita zenbaki harmoniko k-garrena. 1/(k–1) eta gero, termino guztiak ezeztatu egiten dira.

Erreferentziak

  1. Departamento de Matemáticas, Universidad Estatal de Oregón. (1996). Telescoping Series. .

Kanpo estekak

Autoritate kontrola
  • Wikimedia proiektuak
  • Wd Datuak: Q2164293
  • Wd Datuak: Q2164293