Uranium disilicide

Uranium disilicide
Identifiers
CAS Number
  • 12039-85-9
ChemSpider
  • 4891883
ECHA InfoCard 100.031.721 Edit this at Wikidata
EC Number
  • 234-906-4
PubChem CID
  • 6336890
CompTox Dashboard (EPA)
  • DTXSID501313966 Edit this at Wikidata
InChI
  • InChI=1S/2Si.U
    Key: KEZPQLNBRPWCBH-UHFFFAOYSA-N
Properties
Chemical formula
USi2
Molar mass 294.199 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references
Chemical compound

Uranium disilicide is an inorganic chemical compound of uranium in oxidation state +4. It is a silicide of uranium. There has been recent interest in using uranium disilicide as an alternative to uranium dioxide for fuel in nuclear reactors.[1] Advantages are higher percentage of uranium and higher thermal conductivity. A direct replacement of UO2 with U3Si2 should enable a reactor to generate more energy from a set of fuel rods and also provide more "coping time" in the case of a LOCA (Loss of Cooling Accident).

The development of uranium disilicide, uranium nitride, or other high thermal conductivity uranium compound may be critical for the performance of "Accident Tolerant Fuel", a development effort mandated by the US Department of Energy.[2] This is due to zircalloy having a higher thermal conductivity than all replacement materials being developed. In particular, SIC-SiC CMC (link), which has several superior material properties to zircalloy for this application, has about five times lower thermal conductivity (varies due to the manufacturing methods used for the fiber and for the matrix) than zircalloy.(refs on SiC-SiC and zircalloy). The lower thermal conductivity means that a reactor using fuel rods with SiC-SiC CMC cladding and conventional UO2 fuel will have to either: 1) Run at a lower power output to keep the fuel the same temperature, or 2) Run with the same power, with the fuel hotter, which means the reactor has less coping time (time to fix what is wrong before something fails). The alternative, enabled by U3Si2 which has about five times better thermal conductivity than UO2 , is expected to be a fuel rod capable of equal power output, slightly better energy output, and longer coping time.

References

  1. ^ Triuranium Disilicide Nuclear Fuel Composition For Light Water Reactors US Patent # 8.293,151
  2. ^ Development of Light Water Reactor Fuels with Enhanced Accident Tolerance, U.S. Department of Energy June, 2015 Report to Congress https://nuclearfuel.inl.gov/atf/SiteAssets/SitePages/Home/Roadmap_Development%20of%20LWR%20Fuels%20with%20Enhanced%20Accident%20Tolerance.pdf

Further reading

  • Brown, Allan; J. J. Norreys (1961). "Uranium Disilicide". Nature. 191 (4783): 61–62. Bibcode:1961Natur.191...61B. doi:10.1038/191061a0. ISSN 0028-0836. S2CID 4150246.
  • Sasa, Yoshihiko; Masayuki Uda (1976). "Structure of stoichiometric USi2". Journal of Solid State Chemistry. 18 (1): 63–68. Bibcode:1976JSSCh..18...63S. doi:10.1016/0022-4596(76)90079-7. ISSN 0022-4596.
  • Brown, A.; J. J. Norreys (1959). "Beta-Polymorphs of Uranium and Thorium Disilicides". Nature. 183 (4662): 673. Bibcode:1959Natur.183..673B. doi:10.1038/183673a0. ISSN 0028-0836. S2CID 4197445.
  • http://www.rertr.anl.gov/Web1999/Abstracts/18suripto99.html
  • v
  • t
  • e
U(II)
U(III)
  • UF3
  • UCl3
  • UBr3
  • UI3
  • UP
  • U(OH)3
  • UH3
  • UN
Organouranium(III) compounds
  • U(C5H5)3
  • U(IV)
    • U(BH4)4
    • UC
    • UCl4
    • UF4
    • UBr4
    • UI4
    • UO2
    • UH4
    • USi2
    • US2
    • USe2
    • UTe2
    • U(SO4)2
    Organouranium(IV) compounds
  • U(C8H8)2
  • U(C5H5)4
  • U(C5H5)3Cl
  • U(IV,V)
    • U2N3
    U(IV,VI)
    • U3O8
    U(V)
    • UCl5
    • UF5
    • UBr5
    • UI5
    • U2O5
    U(VI)
    • (NH4)2U2O7
    • Na2U2O7
    • UCl6
    • UF6
    • U(PO4)2
    • UO3
    • UO4
    • UO2(CH3COO)2
    • UO2(CHO2)2
    • UO2CO3
    • UO2CO3·2(NH4)2CO3
    • UO2Cl2
    • UO2F2
    • UO2(NO3)2
    • UO2(OH)2
    • (UO2)2(OH)4
    • UO2(SO4)2
    • ZnUO2(CH3COO)4
    • UN2
    • H2UO4
    • Na4UO2(CO3)3
    U(XII)
    • UO6 (hypothetical)
    • v
    • t
    • e
    Salts and covalent derivatives of the silicide ion
    SiH4
    +H
    He
    LiSi Be2Si SiB3
    SiB6
    +B
    SiC
    +C
    Si3N4
    -N
    +N
    SiO2 SiF4 Ne
    NaSi Mg2Si Al Si4− SiP, SiP2
    -P
    +P
    SiS2
    -S
    SiCl4 Ar
    KSi CaSi
    CaSi2
    ScSi Sc5Si3 Sc2Si3 Sc5Si4 TiSi
    TiSi2
    V3Si V5Si3, V6Si5, VSi2, V6Si5 Cr3Si Cr5Si3, CrSi, CrSi2 MnSi, MnSi2, Mn9Si2, Mn3Si, Mn5Si3, Mn11Si9 FeSi2
    FeSi
    Fe5Si3
    Fe2Si
    Fe3Si
    CoSi, CoSi2, Co2Si, Co3Si NiSi, more… Cu17Si3, Cu56Si11, Cu5Si, Cu33Si7, Cu4Si, Cu19Si6, Cu3Si, Cu87Si13 Zn Ga GeSi
    +Ge
    SiAs, SiAs2
    -As
    +As
    SiSe2 SiSe SiBr4 Kr
    RbSi SrSi2 YSi Y5Si3, Y5Si4, Y3Si5, YSi1.4 ZrSi Zr5Si3, Zr5Si4, ZrSi2, Zr3Si2, Zr2Si, Zr3Si Nb4Si Nb5Si3 MoSi2
    Mo3Si Mo5Si3
    Tc RuSi Ru2Si, Ru4Si3, Ru2Si3 RhSi Rh2Si, Rh5Si3, Rh3Si2, Rh20Si13 PdSi Pd5Si, Pd9Si2, Pd3Si, Pd2Si Ag Cd In Sn Sb TeSi2 Te2Si3 SiI4 Xe
    CsSi Ba2Si BaSi2, Ba5Si3 Ba3Si4 * Lu5Si3 HfSi Hf2Si, Hf3Si2, Hf5Si4, HfSi2 Ta9Si2, Ta3Si, Ta5Si3 WSi2 W5Si3 ReSi Re2Si, ReSi1.8 Re5Si3 OsSi IrSi PtSi Au Hg Tl Pb Bi Po At Rn
    Fr Ra ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
     
    * LaSi2 La5Si3, La3Si2, La5Si4, LaSi CeSi2 Ce5Si3, Ce3Si2, Ce5Si4, CeSi, Ce3Si5 PrSi2 Pr5Si3, Pr3Si2, Pr5Si4, PrSi NdSi Nd5Si3, Nd5Si4, Nd5Si3, Nd3Si4, Nd2Si3, NdSix Pm SmSi2 Sm5Si4, Sm5Si3, SmSi, Sm3Si5 Eu? GdSi2 Gd5Si3, Gd5Si4, GdSi TbSi2 SiTb, Si4Tb5, Si3Tb5 DySi2 DySi HoSi2 Ho5Si3, Ho5Si4, HoSi, Ho4Si5 ErSi2 Er5Si3, Er5Si4, ErSi Tm? YbSi Si1.8Yb, Si5Yb3, Si4Yb3, Si4Yb5, Si3Yb5
    ** Ac ThSi PaSi USi2 NpSi2 PuSi Am Cm Bk Cf Es Fm Md No


    Stub icon

    This inorganic compound–related article is a stub. You can help Wikipedia by expanding it.

    • v
    • t
    • e