Lamb–Oseen vortex

Line vortex

In fluid dynamics, the Lamb–Oseen vortex models a line vortex that decays due to viscosity. This vortex is named after Horace Lamb and Carl Wilhelm Oseen.[1][2]

Vector plot of the Lamb–Oseen vortex velocity field.
Evolution of a Lamb–Oseen vortex in air in real time. Free-floating test particles reveal the velocity and vorticity pattern. (scale: image is 20 cm wide)

Mathematical description

Oseen looked for a solution for the Navier–Stokes equations in cylindrical coordinates ( r , θ , z ) {\displaystyle (r,\theta ,z)} with velocity components ( v r , v θ , v z ) {\displaystyle (v_{r},v_{\theta },v_{z})} of the form

v r = 0 , v θ = Γ 2 π r g ( r , t ) , v z = 0. {\displaystyle v_{r}=0,\quad v_{\theta }={\frac {\Gamma }{2\pi r}}g(r,t),\quad v_{z}=0.}

where Γ {\displaystyle \Gamma } is the circulation of the vortex core. Navier-Stokes equations lead to

g t = ν ( 2 g r 2 1 r g r ) {\displaystyle {\frac {\partial g}{\partial t}}=\nu \left({\frac {\partial ^{2}g}{\partial r^{2}}}-{\frac {1}{r}}{\frac {\partial g}{\partial r}}\right)}

which, subject to the conditions that it is regular at r = 0 {\displaystyle r=0} and becomes unity as r {\displaystyle r\rightarrow \infty } , leads to[3]

g ( r , t ) = 1 e r 2 / 4 ν t , {\displaystyle g(r,t)=1-\mathrm {e} ^{-r^{2}/4\nu t},}

where ν {\displaystyle \nu } is the kinematic viscosity of the fluid. At t = 0 {\displaystyle t=0} , we have a potential vortex with concentrated vorticity at the z {\displaystyle z} axis; and this vorticity diffuses away as time passes.

The only non-zero vorticity component is in the z {\displaystyle z} direction, given by

ω z ( r , t ) = Γ 4 π ν t e r 2 / 4 ν t . {\displaystyle \omega _{z}(r,t)={\frac {\Gamma }{4\pi \nu t}}\mathrm {e} ^{-r^{2}/4\nu t}.}

The pressure field simply ensures the vortex rotates in the circumferential direction, providing the centripetal force

p r = ρ v 2 r , {\displaystyle {\partial p \over \partial r}=\rho {v^{2} \over r},}

where ρ is the constant density[4]

Generalized Oseen vortex

The generalized Oseen vortex may be obtained by looking for solutions of the form

v r = γ ( t ) r , v θ = Γ 2 π r g ( r , t ) , v z = 2 γ ( t ) z {\displaystyle v_{r}=-\gamma (t)r,\quad v_{\theta }={\frac {\Gamma }{2\pi r}}g(r,t),\quad v_{z}=2\gamma (t)z}

that leads to the equation

g t γ r g r = ν ( 2 g r 2 1 r g r ) . {\displaystyle {\frac {\partial g}{\partial t}}-\gamma r{\frac {\partial g}{\partial r}}=\nu \left({\frac {\partial ^{2}g}{\partial r^{2}}}-{\frac {1}{r}}{\frac {\partial g}{\partial r}}\right).}

Self-similar solution exists for the coordinate η = r / φ ( t ) {\displaystyle \eta =r/\varphi (t)} , provided φ φ + γ φ 2 = a {\displaystyle \varphi \varphi '+\gamma \varphi ^{2}=a} , where a {\displaystyle a} is a constant, in which case g = 1 e a η 2 / 2 ν {\displaystyle g=1-\mathrm {e} ^{-a\eta ^{2}/2\nu }} . The solution for φ ( t ) {\displaystyle \varphi (t)} may be written according to Rott (1958)[5] as

φ 2 = 2 a exp ( 2 0 t γ ( s ) d s ) c t exp ( 2 0 u γ ( s ) d s ) d u , {\displaystyle \varphi ^{2}=2a\exp \left(-2\int _{0}^{t}\gamma (s)\,\mathrm {d} s\right)\int _{c}^{t}\exp \left(2\int _{0}^{u}\gamma (s)\,\mathrm {d} s\right)\,\mathrm {d} u,}

where c {\displaystyle c} is an arbitrary constant. For γ = 0 {\displaystyle \gamma =0} , the classical Lamb–Oseen vortex is recovered. The case γ = k {\displaystyle \gamma =k} corresponds to the axisymmetric stagnation point flow, where k {\displaystyle k} is a constant. When c = {\displaystyle c=-\infty } , φ 2 = a / k {\displaystyle \varphi ^{2}=a/k} , a Burgers vortex is a obtained. For arbitrary c {\displaystyle c} , the solution becomes φ 2 = a ( 1 + β e 2 k t ) / k {\displaystyle \varphi ^{2}=a(1+\beta \mathrm {e} ^{-2kt})/k} , where β {\displaystyle \beta } is an arbitrary constant. As t {\displaystyle t\rightarrow \infty } , Burgers vortex is recovered.

See also

  • The Rankine vortex and Kaufmann (Scully) vortex are common simplified approximations for a viscous vortex.

References

  1. ^ Oseen, C. W. (1912). Uber die Wirbelbewegung in einer reibenden Flussigkeit. Ark. Mat. Astro. Fys., 7, 14–26.
  2. ^ Saffman, P. G.; Ablowitz, Mark J.; J. Hinch, E.; Ockendon, J. R.; Olver, Peter J. (1992). Vortex dynamics. Cambridge: Cambridge University Press. ISBN 0-521-47739-5. p. 253.
  3. ^ Drazin, P. G., & Riley, N. (2006). The Navier–Stokes equations: a classification of flows and exact solutions (No. 334). Cambridge University Press.
  4. ^ G.K. Batchelor (1967). An Introduction to Fluid Dynamics. Cambridge University Press.
  5. ^ Rott, N. (1958). On the viscous core of a line vortex. Zeitschrift für angewandte Mathematik und Physik ZAMP, 9(5-6), 543–553.