Kirchhoff–Helmholtz integral

The Kirchhoff–Helmholtz integral combines the Helmholtz equation with the Kirchhoff integral theorem[1] to produce a method applicable to acoustics,[2] seismology[3] and other disciplines involving wave propagation.

It states that the sound pressure is completely determined within a volume free of sources, if sound pressure and velocity are determined in all points on its surface.

P ( w , z ) = d A ( G ( w , z | z ) n P ( w , z ) P ( w , z ) n G ( w , z | z ) ) d z {\displaystyle {\boldsymbol {P}}(w,z)=\iint _{dA}\left(G(w,z\vert z'){\frac {\partial }{\partial n}}P(w,z')-P(w,z'){\frac {\partial }{\partial n}}G(w,z\vert z')\right)dz'}

See also

References

  1. ^ Kurt Heutschi (2013-01-25), Acoustics I: sound field calculations (PDF)
  2. ^ Oleg A. Godin (August 1998), "The Kirchhoff–Helmholtz integral theorem and related identities for waves in an inhomogeneous moving fluid", Journal of the Acoustical Society of America, 99 (4): 2468–2500, doi:10.1121/1.415524
  3. ^ Scott, Patricia; Helmberger, Don (1983), Applications of the Kirchhoff-Helmholtz integral to problems in seismology


  • v
  • t
  • e