Hua's identity

Formula relating pairs of elements in a division ring

In algebra, Hua's identity[1] named after Hua Luogeng, states that for any elements a, b in a division ring, a ( a 1 + ( b 1 a ) 1 ) 1 = a b a {\displaystyle a-\left(a^{-1}+\left(b^{-1}-a\right)^{-1}\right)^{-1}=aba} whenever a b 0 , 1 {\displaystyle ab\neq 0,1} . Replacing b {\displaystyle b} with b 1 {\displaystyle -b^{-1}} gives another equivalent form of the identity: ( a + a b 1 a ) 1 + ( a + b ) 1 = a 1 . {\displaystyle \left(a+ab^{-1}a\right)^{-1}+(a+b)^{-1}=a^{-1}.}

Hua's theorem

The identity is used in a proof of Hua's theorem,[2] which states that if σ {\displaystyle \sigma } is a function between division rings satisfying σ ( a + b ) = σ ( a ) + σ ( b ) , σ ( 1 ) = 1 , σ ( a 1 ) = σ ( a ) 1 , {\displaystyle \sigma (a+b)=\sigma (a)+\sigma (b),\quad \sigma (1)=1,\quad \sigma (a^{-1})=\sigma (a)^{-1},} then σ {\displaystyle \sigma } is a homomorphism or an antihomomorphism. This theorem is connected to the fundamental theorem of projective geometry.

Proof of the identity

One has ( a a b a ) ( a 1 + ( b 1 a ) 1 ) = 1 a b + a b ( b 1 a ) ( b 1 a ) 1 = 1. {\displaystyle (a-aba)\left(a^{-1}+\left(b^{-1}-a\right)^{-1}\right)=1-ab+ab\left(b^{-1}-a\right)\left(b^{-1}-a\right)^{-1}=1.}

The proof is valid in any ring as long as a , b , a b 1 {\displaystyle a,b,ab-1} are units.[3]

References

  1. ^ Cohn 2003, §9.1
  2. ^ Cohn 2003, Theorem 9.1.3
  3. ^ Jacobson 2009, § 2.2. Exercise 9.
  • Cohn, Paul M. (2003). Further algebra and applications (Revised ed. of Algebra, 2nd ed.). London: Springer-Verlag. ISBN 1-85233-667-6. Zbl 1006.00001.
  • Jacobson, Nathan (2009). Basic algebra. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-47189-1. OCLC 294885194.


  • v
  • t
  • e