Grassmann graph

Class of simple graphs defined from vector spaces
Grassmann graph
Named afterHermann Grassmann
Vertices ( n k ) q {\displaystyle {\binom {n}{k}}_{q}}
Edges q [ k ] q [ n k ] q 2 ( n k ) q {\displaystyle {\frac {q[k]_{q}[n-k]_{q}}{2}}{\binom {n}{k}}_{q}}
Diametermin(k, nk)
PropertiesDistance-transitive
Connected
NotationJq(n,k)
Table of graphs and parameters

In graph theory, Grassmann graphs are a special class of simple graphs defined from systems of subspaces. The vertices of the Grassmann graph Jq(n, k) are the k-dimensional subspaces of an n-dimensional vector space over a finite field of order q; two vertices are adjacent when their intersection is (k – 1)-dimensional.

Many of the parameters of Grassmann graphs are q-analogs of the parameters of Johnson graphs, and Grassmann graphs have several of the same graph properties as Johnson graphs.

Graph-theoretic properties

  • Jq(n, k) is isomorphic to Jq(n, nk).
  • For all 0 ≤ d ≤ diam(Jq(n,k)), the intersection of any pair of vertices at distance d is (kd)-dimensional.
  • The clique number of Jq(n,k) is given by an expression in terms its least and greatest eigenvalues λ min and λ max:
ω ( J q ( n , k ) ) = 1 λ max λ min {\displaystyle \omega \left(J_{q}(n,k)\right)=1-{\frac {\lambda _{\max }}{\lambda _{\min }}}} [citation needed]

Automorphism group

There is a distance-transitive subgroup of Aut ( J q ( n , k ) ) {\displaystyle \operatorname {Aut} (J_{q}(n,k))} isomorphic to the projective linear group P Γ L ( n , q ) {\displaystyle \operatorname {P\Gamma L} (n,q)} .[citation needed]

In fact, unless n = 2 k {\displaystyle n=2k} or k { 1 , n 1 } {\displaystyle k\in \{1,n-1\}} , Aut ( J q ( n , k ) ) P Γ L ( n , q ) {\displaystyle \operatorname {Aut} (J_{q}(n,k))\cong \operatorname {P\Gamma L} (n,q)} ; otherwise Aut ( J q ( n , k ) ) P Γ L ( n , q ) × C 2 {\displaystyle \operatorname {Aut} (J_{q}(n,k))\cong \operatorname {P\Gamma L} (n,q)\times C_{2}} or Aut ( J q ( n , k ) ) Sym ( [ n ] q ) {\displaystyle \operatorname {Aut} (J_{q}(n,k))\cong \operatorname {Sym} ([n]_{q})} respectively.[1]

Intersection array

As a consequence of being distance-transitive, J q ( n , k ) {\displaystyle J_{q}(n,k)} is also distance-regular. Letting d {\displaystyle d} denote its diameter, the intersection array of J q ( n , k ) {\displaystyle J_{q}(n,k)} is given by { b 0 , , b d 1 ; c 1 , c d } {\displaystyle \left\{b_{0},\ldots ,b_{d-1};c_{1},\ldots c_{d}\right\}} where:

  • b j := q 2 j + 1 [ k j ] q [ n k j ] q {\displaystyle b_{j}:=q^{2j+1}[k-j]_{q}[n-k-j]_{q}} for all 0 j < d {\displaystyle 0\leq j<d} .
  • c j := ( [ j ] q ) 2 {\displaystyle c_{j}:=([j]_{q})^{2}} for all 0 < j d {\displaystyle 0<j\leq d} .

Spectrum

  • The characteristic polynomial of J q ( n , k ) {\displaystyle J_{q}(n,k)} is given by
φ ( x ) := j = 0 diam ( J q ( n , k ) ) ( x ( q j + 1 [ k j ] q [ n k j ] q [ j ] q ) ) ( ( n j ) q ( n j 1 ) q ) {\displaystyle \varphi (x):=\prod \limits _{j=0}^{\operatorname {diam} (J_{q}(n,k))}\left(x-\left(q^{j+1}[k-j]_{q}[n-k-j]_{q}-[j]_{q}\right)\right)^{\left({\binom {n}{j}}_{q}-{\binom {n}{j-1}}_{q}\right)}} .[1]

See also

References

  1. ^ a b Brouwer, Andries E. (1989). Distance-Regular Graphs. Cohen, Arjeh M., Neumaier, Arnold. Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 9783642743436. OCLC 851840609.