G-expectation

In probability theory, the g-expectation is a nonlinear expectation based on a backwards stochastic differential equation (BSDE) originally developed by Shige Peng.[1]

Definition

Given a probability space ( Ω , F , P ) {\displaystyle (\Omega ,{\mathcal {F}},\mathbb {P} )} with ( W t ) t 0 {\displaystyle (W_{t})_{t\geq 0}} is a (d-dimensional) Wiener process (on that space). Given the filtration generated by ( W t ) {\displaystyle (W_{t})} , i.e. F t = σ ( W s : s [ 0 , t ] ) {\displaystyle {\mathcal {F}}_{t}=\sigma (W_{s}:s\in [0,t])} , let X {\displaystyle X} be F T {\displaystyle {\mathcal {F}}_{T}} measurable. Consider the BSDE given by:

d Y t = g ( t , Y t , Z t ) d t Z t d W t Y T = X {\displaystyle {\begin{aligned}dY_{t}&=g(t,Y_{t},Z_{t})\,dt-Z_{t}\,dW_{t}\\Y_{T}&=X\end{aligned}}}

Then the g-expectation for X {\displaystyle X} is given by E g [ X ] := Y 0 {\displaystyle \mathbb {E} ^{g}[X]:=Y_{0}} . Note that if X {\displaystyle X} is an m-dimensional vector, then Y t {\displaystyle Y_{t}} (for each time t {\displaystyle t} ) is an m-dimensional vector and Z t {\displaystyle Z_{t}} is an m × d {\displaystyle m\times d} matrix.

In fact the conditional expectation is given by E g [ X F t ] := Y t {\displaystyle \mathbb {E} ^{g}[X\mid {\mathcal {F}}_{t}]:=Y_{t}} and much like the formal definition for conditional expectation it follows that E g [ 1 A E g [ X F t ] ] = E g [ 1 A X ] {\displaystyle \mathbb {E} ^{g}[1_{A}\mathbb {E} ^{g}[X\mid {\mathcal {F}}_{t}]]=\mathbb {E} ^{g}[1_{A}X]} for any A F t {\displaystyle A\in {\mathcal {F}}_{t}} (and the 1 {\displaystyle 1} function is the indicator function).[1]

Existence and uniqueness

Let g : [ 0 , T ] × R m × R m × d R m {\displaystyle g:[0,T]\times \mathbb {R} ^{m}\times \mathbb {R} ^{m\times d}\to \mathbb {R} ^{m}} satisfy:

  1. g ( , y , z ) {\displaystyle g(\cdot ,y,z)} is an F t {\displaystyle {\mathcal {F}}_{t}} -adapted process for every ( y , z ) R m × R m × d {\displaystyle (y,z)\in \mathbb {R} ^{m}\times \mathbb {R} ^{m\times d}}
  2. 0 T | g ( t , 0 , 0 ) | d t L 2 ( Ω , F T , P ) {\displaystyle \int _{0}^{T}|g(t,0,0)|\,dt\in L^{2}(\Omega ,{\mathcal {F}}_{T},\mathbb {P} )} the L2 space (where | | {\displaystyle |\cdot |} is a norm in R m {\displaystyle \mathbb {R} ^{m}} )
  3. g {\displaystyle g} is Lipschitz continuous in ( y , z ) {\displaystyle (y,z)} , i.e. for every y 1 , y 2 R m {\displaystyle y_{1},y_{2}\in \mathbb {R} ^{m}} and z 1 , z 2 R m × d {\displaystyle z_{1},z_{2}\in \mathbb {R} ^{m\times d}} it follows that | g ( t , y 1 , z 1 ) g ( t , y 2 , z 2 ) | C ( | y 1 y 2 | + | z 1 z 2 | ) {\displaystyle |g(t,y_{1},z_{1})-g(t,y_{2},z_{2})|\leq C(|y_{1}-y_{2}|+|z_{1}-z_{2}|)} for some constant C {\displaystyle C}

Then for any random variable X L 2 ( Ω , F t , P ; R m ) {\displaystyle X\in L^{2}(\Omega ,{\mathcal {F}}_{t},\mathbb {P} ;\mathbb {R} ^{m})} there exists a unique pair of F t {\displaystyle {\mathcal {F}}_{t}} -adapted processes ( Y , Z ) {\displaystyle (Y,Z)} which satisfy the stochastic differential equation.[2]

In particular, if g {\displaystyle g} additionally satisfies:

  1. g {\displaystyle g} is continuous in time ( t {\displaystyle t} )
  2. g ( t , y , 0 ) 0 {\displaystyle g(t,y,0)\equiv 0} for all ( t , y ) [ 0 , T ] × R m {\displaystyle (t,y)\in [0,T]\times \mathbb {R} ^{m}}

then for the terminal random variable X L 2 ( Ω , F t , P ; R m ) {\displaystyle X\in L^{2}(\Omega ,{\mathcal {F}}_{t},\mathbb {P} ;\mathbb {R} ^{m})} it follows that the solution processes ( Y , Z ) {\displaystyle (Y,Z)} are square integrable. Therefore E g [ X | F t ] {\displaystyle \mathbb {E} ^{g}[X|{\mathcal {F}}_{t}]} is square integrable for all times t {\displaystyle t} .[3]

See also

  • Expected value
  • Choquet expectation
  • Risk measure – almost any time consistent convex risk measure can be written as ρ g ( X ) := E g [ X ] {\displaystyle \rho _{g}(X):=\mathbb {E} ^{g}[-X]} [4]

References

  1. ^ a b Philippe Briand; François Coquet; Ying Hu; Jean Mémin; Shige Peng (2000). "A Converse Comparison Theorem for BSDEs and Related Properties of g-Expectation" (PDF). Electronic Communications in Probability. 5 (13): 101–117.
  2. ^ Peng, S. (2004). "Nonlinear Expectations, Nonlinear Evaluations and Risk Measures". Stochastic Methods in Finance (PDF). Lecture Notes in Mathematics. Vol. 1856. pp. 165–138. doi:10.1007/978-3-540-44644-6_4. ISBN 978-3-540-22953-7. Archived from the original (pdf) on March 3, 2016. Retrieved August 9, 2012.
  3. ^ Chen, Z.; Chen, T.; Davison, M. (2005). "Choquet expectation and Peng's g -expectation". The Annals of Probability. 33 (3): 1179. arXiv:math/0506598. doi:10.1214/009117904000001053.
  4. ^ Rosazza Gianin, E. (2006). "Risk measures via g-expectations". Insurance: Mathematics and Economics. 39: 19–65. doi:10.1016/j.insmatheco.2006.01.002.