Chlorophyta

Phylum of green algae

Chlorophyta
Temporal range: 1000–0 Ma[1]
Pha.
Proterozoic
Archean
Had.
"Siphoneae" from Ernst Haeckel's Kunstformen der Natur, 1904
Scientific classification Edit this classification
Clade: Diaphoretickes
Clade: CAM
Clade: Archaeplastida
(unranked): Viridiplantae
Division: Chlorophyta
Reichenbach, 1828, emend. Pascher, 1914, emend. Lewis & McCourt, 2004[2][3][4]
Classes[5]
  • Chloropicophyceae
  • Chuariophyceae
  • Mamiellophyceae
  • Nephroselmidophyceae
  • Picocystophyceae
  • Pyramimonadophyceae
  • Tetraphytina
    • Chlorodendrophyceae
    • Pedinophyceae
    • UTC clade
      • Ulvophyceae
      • Trebouxiophyceae
      • Chlorophyceae
Diversity
7,934 species
(6,851 living, 1,083 fossil)[6]
Synonyms
  • Chlorophycophyta Papenfuss 1946[7]
  • Chlorophycota
  • Chlorophytina
  • Chlorophyllophyceae
  • Isokontae
  • Stephanokontae

Chlorophyta is a taxon of green algae informally called chlorophytes.[8]

Systematics

Taxonomic history

The first mention of Chlorophyta belongs to German botanist Heinrich Gottlieb Ludwig Reichenbach in his 1828 work Conspectus regni vegetabilis. Under this name, he grouped all algae, mosses ('musci') and ferns ('filices'), as well as some seed plants (Zamia and Cycas).[9] This usage did not gain popularity. In 1914, Bohemian botanist Adolf Pascher modified the name to encompass exclusively green algae, that is, algae which contain chlorophylls a and b and store starch in their chloroplasts.[10] Pascher established a scheme where Chlorophyta was composed of two groups: Chlorophyceae, which included algae now known as Chlorophyta, and Conjugatae, which are now known as Zygnematales and belong to the Streptophyta clade from which land plants evolved.[3][11]

During the 20th century, many different classification schemes for the Chlorophyta arose. The Smith system, published in 1938 by American botanist Gilbert Morgan Smith, distinguished two classes: Chlorophyceae, which contained all green algae (unicellular and multicellular) that did not grow through an apical cell; and Charophyceae, which contained only multicellular green algae that grew via an apical cell and had special sterile envelopes to protect the sex organs.[12]

With the advent of electron microscopy studies, botanists published various classification proposals based on finer cellular structures and phenomena, such as mitosis, cytokinesis, cytoskeleton, flagella and cell wall polysaccharides.[13][14] British botanist Frank Eric Round [nl] proposed in 1971 a scheme which distinguishes Chlorophyta from other green algal divisions Charophyta, Prasinophyta and Euglenophyta. He included four classes of chlorophytes: Zygnemaphyceae, Oedogoniophyceae, Chlorophyceae and Bryopsidophyceae.[15] Other proposals retained the Chlorophyta as containing all green algae, and varied from one another in the number of classes. For example, the 1984 proposal by Mattox & Stewart included five classes,[13] while the 1985 proposal by Bold & Wynne included only two,[16] and the 1995 proposal by Christiaan van den Hoek and coauthors included up to eleven classes.[10]

The modern usage of the name 'Chlorophyta' was established in 2004, when phycologists Lewis & McCourt firmly separated the chlorophytes from the streptophytes on the basis of molecular phylogenetics. All green algae that were more closely related to land plants than to chlorophytes were grouped as a paraphyletic division Charophyta.[11]

Within the green algae, the most basal lineages were grouped under the informal name of "prasinophytes", and they were all believed to belong to the Chlorophyta clade.[11] However, in 2020 a study recovered a new clade and division known as Prasinodermophyta, which contains two prasinophyte lineages previously considered chlorophytes.[17] Below is a cladogram representing the current state of green algal classification:[18][17][19][20]

Classification

Representatives of all living classes of chlorophytes
Tetraselmis suecica (Chlorodendrophyceae)
Volvox aureus (Chlorophyceae)
Chloropicon sieburthii (Chloropicophyceae)
Micromonas pusilla (Mamiellophyceae)
Nephroselmis olivacea (Nephroselmidophyceae)
Mantoniella tinhauana (Pedinophyceae)
Picocystis salinarum (Picocystophyceae)
Pyramimonas longicauda (Pyramimonadophyceae)
Coccomyxa polymorpha (Trebouxiophyceae)
Ulva lactuca
(Ulvophyceae)

Currently eleven chlorophyte classes are accepted, here presented in alphabetical order with some of their characteristics and biodiversity:

  • Chlorodendrophyceae (60 species, 15 extinct):[6] unicellular flagellates (monadoids) surrounded by an outer cell covering or theca of organic extracellular scales composed of proteins and ketosugars. Some of these scales make up hair-like structures. Capable of asexual reproduction through cell division inside the theca. No sexual reproduction has been described. Each cell contains a single chloroplast and exhibits two flagella. Present in marine and freshwater habitats.[21][22][23]
  • Chloropicophyceae (8 species):[6] unicellular solitary coccoids. Cells are surrounded by a multi-layered cell wall. No sexual or asexual reproduction has been described. Each cell contains a single chloroplast with astaxanthin and loroxanthin, and lacks pyrenoids or flagella. They are exclusively marine.[18]
  • Chuariophyceae (3 extinct species): exclusively fossil group containing carbonaceous megafossils found in Ediacaran rocks, such as Tawuia.[6][28]
  • Mamiellophyceae (25 species):[6] unicellular solitary monadoids. Cells are naked or covered by one or two layers of flat scales, mainly with spiderweb-like or reticulate ornamentation. Each cell contains one or rarely two chloroplasts, almost always with prasinoxanthin; two equal or unequal flagella, or just one flagellum, or lacking any flagella. If flagella are present, they can be either smooth or covered in scales in the same manner as the cells. Present in marine and freshwater habitats.[29][22]
  • Nephroselmidophyceae (29 species):[6] unicellular monadoids. Cells are covered by scales. They are capable of sexual reproduction through hologamy (fusion of entire cells), and of asexual reproduction through binary fission. Each cell contains a single cloroplast, a pyrenoid, and two flagella covered by scales. Present in marine and freshwater habitats.[30][31][22]
  • Pedinophyceae (24 species):[6] unicellular asymmetrical monadoids that undergo a coccoid palmelloid phase covered by mucilage. Cells lack extracellular scales, but in rare cases are covered on the posterior side by a theca. Each cell contains a single chloroplast, a pyrenoid, and a single flagellum usually covered in mastigonemes. Present in marine, freshwater and terrestrial habitats.[32][22][33]
  • Picocystophyceae (1 species):[6] unicellular coccoids, ovoid and trilobed in shape. Cells are surrounded by a multi-layered cell wall of poly-arabinose, manose, galactose and glucose. No sexual reproduction has been described. They are capable of asexual reproduction through autosporulation, resulting in two or rarely four daughter cells. Each cell contains a single bilobed chloroplast with diatoxanthin and monadoxanthin, without any pyrenoid or flagella. Present in saline lakes.[34][18][22]
  • Pyramimonadophyceae (166 species, 59 extinct):[6] unicellular monadoids or coccoids. Cells are covered by two or more layers of organic scales. No sexual reproduction has been described, but some cells with only one flagellum have been interpreted as potential gametes. Asexual reproduction has only been observed in the coccoid forms, via zoospores. Each cell contains a single chloroplast, a pyrenoid, and between 4 and 16 flagella. The flagella are covered in at least two layers of organic scales: a bottom layer of pentagonal scales organized in 24 rows, and a top layer of limuloid scales distributed in 11 rows. They are exclusively marine.[22][35]
  • Trebouxiophyceae (926 species, 1 extinct):[6] unicellular monadoids occasionally without flagella, or colonial, or ramified filamentous thalli, or living as the photobionts of lichen. Cells are covered by a cell wall of cellulose, algaenans, and β-galactofuranane. No sexual reproduction has been described with the exception of some observations of gamete fusion and presence of meiotic genes. They are capable of asexual reproduction through autospores or zoospores. Each cell contains a single chloroplast, a pyrenoid, and one or two pairs of smooth flagella. They are present in marine, freshwater and terrestrial habitats.[24][36][4][37]
  • Ulvophyceae (2,695 species, 990 extinct):[6] macroscopic thalli, either filamentous (which may be ramified) or foliose (composed of monostromatic or distromatic layers) or even compact tubular forms, generally multinucleate. Cells surrounded by a cell wall that may be calcified, composed of cellulose, β-manane, β-xilane, sulphated or piruvilated polysaccharides or sulphated ramnogalacturonanes, arabinogalactan proteins, and extensin. They exhibit a haplodiplontic life cycle where the alternating generations can be isomorphic or heteromorphic. They reproduce asexually via zoospores that may be covered in scales. Each cell contains a single chloroplast, and one or two pairs of flagella without mastigonemes but covered in scales. They are present in marine, freshwater and terrestrial habitats.[24][4][38]

Ecology

Green algae on coastal rocks at Shihtiping in Taiwan

Most species of Chlorophyta are aquatic, prevalent in both marine and freshwater environments. About 90% of all known species live in freshwater.[39] However, some species have adapted to a wide range of terrestrial environments. For example, Chlamydomonas nivalis lives on summer alpine snowfields, and Trentepohlia species, live attached to rocks or woody parts of trees.[40][25] Several species have adapted to specialised and extreme environments, such as deserts, arctic environments, hypersaline habitats, marine deep waters, deep-sea hydrothermal vents and habitats that experiences extreme changes in temperature, light and salinity.[41][42][43][44] Some groups, such as the Trentepohliales are exclusively found on land.[45] Several species of Chlorophyta live in symbiosis with a diverse range of eukaryotes, including fungi (to form lichens), ciliates, forams, cnidarians and molluscs.[25] Some species of Chlorophyta are heterotrophic, either free-living or parasitic.[46][47] Others are mixotrophic bacterivores through phagocytosis.[48] Two common species of the heterotrophic green alga Prototheca are pathogenic and can cause the disease protothecosis in humans and animals.[49]

With the exception of the three classes Ulvophyceae, Trebouxiophyceae and Chlorophyceae in the UTC clade, which show various degrees of multicellularity, all the Chlorophyta lineages are unicellular.[50] Some members of the group form symbiotic relationships with protozoa, sponges, and cnidarians. Others form symbiotic relationships with fungi to form lichens, but the majority of species are free-living. Some conduct sexual reproduction, which is oogamous or isogamous. All members of the clade have motile flagellated swimming cells.[51] Monostroma kuroshiense, an edible green alga cultivated worldwide and most expensive among green algae, belongs to this group.

Evolution

In February 2020, the fossilized remains of a green alga, named Proterocladus antiquus were discovered in the northern province of Liaoning, China. At around a billion years old, it is believed to be one of the oldest examples of a multicellular chlorophyte. It is currently classified as a member of order Siphonocladales, class Ulvophyceae.[1] In 2023, a study calculated the molecular age of green algae as calibrated by this fossil. The study estimated the origin of Chlorophyta within the Mesoproterozoic era, at around 2.04–1.23 billion years ago.[20]

Usage

Model organisms

Among chlorophytes, a small group known as the volvocine green algae is being researched to understand the origins of cell differentiation and multicellularity. In particular, the unicellular flagellate Chlamydomonas reinhardtii and the colonial organism Volvox carteri are object of interest due to sharing homologous genes that in Volvox are directly involved in the development of two different cell types with full division of labor between swimming and reproduction, whereas in Chlamydomonas only one cell type exists that can function as a gamete. Other volvocine species, with intermediate characters between these two, are studied to further understand the transition towards the cellular division of labor, namely Gonium pectorale, Pandorina morum, Eudorina elegans and Pleodorina starrii.[52]

Industrial uses

Chlorophyte microalgae are a valuable source of biofuel and various chemicals and products in industrial amounts, such as carotenoids, vitamins and unsaturated fatty acids. The genus Botryococcus is an efficient producer of hydrocarbons, which are converted into biodiesel. Various genera (Chlorella, Scenedesmus, Haematococcus, Dunaliella and Tetraselmis) are used as cellular factories of biomass, lipids and different vitamins for either human or animal consumption, and even for usage as pharmaceuticals. Some of their pigments are employed for cosmetics.[53]

References

Citations

  1. ^ a b Tang et al. 2020.
  2. ^ Reichenbach 1828, p. 23.
  3. ^ a b Pascher 1914.
  4. ^ a b c Adl et al. 2019, p. 36.
  5. ^ Guiry 2024.
  6. ^ a b c d e f g h i j k l Guiry 2024, p. 5.
  7. ^ Papenfuss 1955.
  8. ^ Rockwell et al. 2017.
  9. ^ Reichenbach 1828, p. 23–40.
  10. ^ a b van den Hoek, Mann & Jahns 1995.
  11. ^ a b c Lewis & McCourt 2004.
  12. ^ Smith 1938, p. 12.
  13. ^ a b Mattox & Stewart 1984.
  14. ^ Lobban & Wynne 1981, p. 88.
  15. ^ Round 1971.
  16. ^ Bold & Wynne 1985.
  17. ^ a b Li et al. 2020.
  18. ^ a b c Lopes dos Santos et al. 2017.
  19. ^ Gulbrandsen et al. 2021.
  20. ^ a b Yang et al. 2023.
  21. ^ Hori, Norris & Chihara 1986.
  22. ^ a b c d e f Adl et al. 2019, p. 37.
  23. ^ Graham et al. 2022, p. 17-2.
  24. ^ a b c Domozych et al. 2012.
  25. ^ a b c Leliaert et al. 2012.
  26. ^ Adl et al. 2019, p. 36–37.
  27. ^ Graham et al. 2022, p. 19-2–19-5.
  28. ^ Srivastava 2002.
  29. ^ Marin & Melkonian 2010.
  30. ^ Nakayama et al. 2007.
  31. ^ Yamaguchi et al. 2010.
  32. ^ Marin 2012.
  33. ^ Graham et al. 2022, p. 17-3.
  34. ^ Lewin et al. 2000.
  35. ^ Daugbjerg, Fassel & Moestrup 2020.
  36. ^ Fučíková, Pažoutová & Rindi 2015.
  37. ^ Graham et al. 2022, p. 17-4–17-11.
  38. ^ Graham et al. 2022, p. 18-2–18-24.
  39. ^ Lee 2018.
  40. ^ Graham et al. 2022.
  41. ^ Lewis & Lewis 2005.
  42. ^ De Wever et al. 2009.
  43. ^ Leliaert, Verbruggen & Zechman 2011.
  44. ^ Foflonker et al. 2016.
  45. ^ López-Bautista, Rindi & Guiry 2006.
  46. ^ Joubert & Rijkenberg 1971.
  47. ^ Nedelcu 2001.
  48. ^ Anderson, Charvet & Hansen 2018.
  49. ^ Tartar et al. 2002.
  50. ^ Umen 2014.
  51. ^ Kapraun 2007.
  52. ^ Nishii & Miller 2010.
  53. ^ Baudelet et al. 2017.

Cited literature

  • Adl, Sina M.; Bass, David; Lane, Christopher E.; Lukeš, Julius; Schoch, Conrad L.; Smirnov, Alexey; Agatha, Sabine; Berney, Cedric; Brown, Matthew W.; Burki, Fabien; et al. (2019). "Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes". Journal of Eukaryotic Microbiology. 66 (1): 4–119. doi:10.1111/JEU.12691. PMC 6492006. PMID 30257078.
  • Anderson, R.; Charvet, S.; Hansen, P. J. (2018). "Mixotrophy in Chlorophytes and Haptophytes—Effect of Irradiance, Macronutrient, Micronutrient and Vitamin Limitation". Frontiers in Microbiology. 9: 1704. doi:10.3389/fmicb.2018.01704. PMC 6080504. PMID 30108563.
  • Baudelet, Paul-Hubert; Ricochon, Guillaume; Linder, Michel; Muniglia, Lionel (2017). "A new insight into cell walls of Chlorophyta". Algal Research. 25 (1): 333–371. doi:10.1016/j.algal.2017.04.008.
  • Becker, Burkhard; Marin, Birger (2009). "Streptophyte algae and the origin of embryophytes". Annals of Botany. 103 (7): 999–1004. doi:10.1093/aob/mcp044. PMC 2707909. PMID 19273476.
  • Bold, Harold Charles; Wynne, Michael James (1985). Introduction to the algae : structure and reproduction (2nd ed.). Englewood Cliffs, N.J.: Prentice-Hall. ISBN 978-0-13-477746-7.
  • Daugbjerg, Niels; Fassel, Nicolai M. D.; Moestrup, Øjvind (2020). "Microscopy and phylogeny of Pyramimonas tatianae sp. nov. (Pyramimonadales, Chlorophyta), a scaly quadriflagellate from Golden Horn Bay (eastern Russia) and formal description of Pyramimonadophyceae classis nova". European Journal of Phycology. 55 (1): 49–63. doi:10.1080/09670262.2019.1638524.
  • De Wever, Aaike; Leliaert, Frederik; Verleyen, Elie; Vanormelingen, Pieter; Van der Gucht, Katleen; Hodgson, Dominic A.; Sabbe, Koen; Vyverman, Wim (October 2009). "Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia". Proceedings of the Royal Society B: Biological Sciences. 276 (1673): 3591–3599. doi:10.1098/rspb.2009.0994. PMC 2817313. PMID 19625320.
  • Domozych, David S.; Ciancia, Marina; Fangel, Jonatan U.; Mikkelsen, Maria Dalgaard; Ulvskov, Peter; Willats, William G. T. (2012). "The Cell Walls of Green Algae: A Journey through Evolution and Diversity". Frontiers in Plant Science. 3: 82. doi:10.3389/fpls.2012.00082. PMC 3355577. PMID 22639667.
  • Foflonker, Fatima; Ananyev, Gennady; Qiu, Huan; Morrison, Andrenette; Palenik, Brian; Dismukes, G. Charles; Bhattacharya, Debashish (June 2016). "The unexpected extremophile: Tolerance to fluctuating salinity in the green alga Picochlorum". Algal Research. 16: 465–472. doi:10.1016/j.algal.2016.04.003.
  • Fučíková, Karolina; Pažoutová, Marie; Rindi, Fabio (2015). "Meiotic genes and sexual reproduction in the green algal class Trebouxiophyceae (Chlorophyta)". Journal of Phycology. 51 (3): 419–430. doi:10.1111/jpy.12293.
  • Graham, Linda E.; Graham, James M.; Wilcox, Lee W.; Cook, Martha E. (2022). Algae (4th ed.). LJLM Press. ISBN 978-0-9863935-4-9.
  • Guiry, Michael D. (2024). "How many species of algae are there? A reprise. Four kingdoms, 14 phyla, 63 classes and still growing". Journal of Phycology. 60 (2): 214–228. doi:10.1111/jpy.13431.
  • Gulbrandsen, Øyvind Sætren; Andresen, Ina Jungersen; Krabberød, Anders Kristian; Bråte, Jon; Shalchian-Tabrizi, Kamran (2021). "Phylogenomic analysis restructures the Ulvophyceae". Journal of Phycology. 57 (4): 1223–1233. doi:10.1111/jpy.13168. PMID 33721355.
  • Hori, Terumitsu; Norris, Richard E.; Chihara, Mitsuo (1986). "Studies on the Ultrastructure and Taxonomy of the Genus Tetraselmis (Prasinophyceae) III. Subgenus Parviselmis". Shokubutsu-Gaku-Zasshi [The Botanical Magazine, Tokyo]. 99 (1): 123–135. doi:10.1007/BF02488627.
  • Joubert, J. J.; Rijkenberg, F. H. (1971). "Parasitic green algae". Annual Review of Phytopathology. 9: 45–64. doi:10.1146/annurev.py.09.090171.000401.
  • Kapraun, Donald F. (April 2007). "Nuclear DNA content estimates in green algal lineages: chlorophyta and streptophyta". Annals of Botany. 99 (4): 677–701. doi:10.1093/aob/mcl294. PMC 2802934. PMID 17272304.
  • Lee, Robert Edward (2018). "Chlorophyta". Phycology (5th ed.). Cambridge University Press. pp. 133–230. doi:10.1017/9781316407219. ISBN 9781316407219.
  • Leliaert, Frederik; Verbruggen, Heroen; Zechman, Frederick W. (September 2011). "Into the deep: new discoveries at the base of the green plant phylogeny". BioEssays. 33 (9): 683–692. doi:10.1002/bies.201100035. PMID 21744372. S2CID 40459076.
  • Leliaert, Frederik; Smith, David R.; Moreau, Hervé; Herron, Matthew D.; Verbruggen, Heroen; Delwiche, Charles F.; De Clerck, Olivier (2012). "Phylogeny and molecular evolution of the green algae" (PDF). Critical Reviews in Plant Sciences. 31: 1–46. doi:10.1080/07352689.2011.615705. S2CID 17603352. Archived (PDF) from the original on 2015-06-26.
  • Lewin, R. A.; Krienitz, L.; Goericke, R.; Takeda, H.; Hepperle, D. (2000). "Picocystis salinarum gen. et sp. nov. (Chlorophyta) – a new picoplanktonic green alga". Phycologia. 39 (6): 560–565. doi:10.2216/i0031-8884-39-6-560.1.
  • Lewis, Louise A.; McCourt, Richard M. (2004). "Green algae and the origin of land plants". American Journal of Botany. 91 (10): 1535–56. doi:10.3732/ajb.91.10.1535. PMID 21652308.
  • Lewis, Louise A.; Lewis, Paul O. (December 2005). "Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta)". Systematic Biology. 54 (6): 936–47. doi:10.1080/10635150500354852. PMID 16338765.
  • Li, Linzhou; Wang, Sibo; Wang, Hongli; Sahu, Sunil Kumar; Marin, Birger; Li, Haoyuan; Xu, Yan; Liang, Hongping; Li, Zhen; Cheng, Shifeng; et al. (September 2020). "The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants". Nature Ecology & Evolution. 4 (9): 1220–1231. doi:10.1038/s41559-020-1221-7. PMC 7455551. PMID 32572216.
  • Lobban CS, Wynne MJ (1981). The Biology of Seaweeds. Botanical Monograph Series 17. University of California Press. ISBN 9780520045859.
  • Lopes dos Santos, Adriana; Pollina, Thibaut; Gourvil, Priscillia; Corre, Erwan; Marie, Dominique; Garrido, José Luis; Rodríguez, Francisco; Noël, Mary-Hélène; Vaulot, Daniel; Eikrem, Wenche (2017). "Chloropicophyceae, a new class of picophytoplanktonic prasinophytes". Sci Rep. 7 (1): 14019. Bibcode:2017NatSR...714019L. doi:10.1038/s41598-017-12412-5. PMC 5656628. PMID 29070840.
  • López-Bautista, Juan M.; Rindi, Fabio; Guiry, Michael D. (July 2006). "Molecular systematics of the subaerial green algal order Trentepohliales: an assessment based on morphological and molecular data". International Journal of Systematic and Evolutionary Microbiology. 56 (7): 1709–1715. doi:10.1099/ijs.0.63990-0. hdl:10379/9448. PMID 16825655.
  • Marin, Birger; Melkonian, Michael (April 2010). "Molecular Phylogeny and Classification of the Mamiellophyceae class. nov. (Chlorophyta) based on Sequence Comparisons of the Nuclear- and Plastid-encoded rRNA Operons". Protist. 161 (2): 304–336. doi:10.1016/j.protis.2009.10.002. PMID 20005168.
  • Marin, Birger (2012). "Nested in the Chlorellales or Independent Class? Phylogeny and Classification of the Pedinophyceae (Viridiplantae) Revealed by Molecular Phylogenetic Analyses of Complete Nuclear and Plastid-encoded rRNA Operons". Protist. 163 (5): 778–805. doi:10.1016/j.protis.2011.11.004. PMID 22192529.
  • Mattox, K. R.; Stewart, K. D. (1984). "Classification of the Green Algae: A Concept Based on Comparative Cytology". In Irvine, D. E. G.; John, D. M. (eds.). Systematics of the Green Algae. Systematics Association Special. Vol. 27. Academic Press. pp. 29–72. ISBN 0-12-374040-1.
  • Nakayama, Takeshi; Suda, Shoichiro; Kawachi, Masanobu; Inouye, Isao (2007). "Phylogeny and ultrastructure of Nephroselmis and Pseudoscourfieldia (Chlorophyta), including the description of Nephroselmis anterostigmatica sp. nov. and a proposal for the Nephroselmidales ord. nov". Phycologia. 46 (6): 680–697. doi:10.2216/04-25.1.
  • Nedelcu, Aurora M. (December 2001). "Complex patterns of plastid 16S rRNA gene evolution in nonphotosynthetic green algae". Journal of Molecular Evolution. 53 (6): 670–679. Bibcode:2001JMolE..53..670N. doi:10.1007/s002390010254. PMID 11677627. S2CID 21151223.
  • Nishii, Ichiro; Miller, Stephen M. (2010). "Volvox: Simple steps to developmental complexity?". Current Opinion in Plant Biology. 13 (6): 646–653. doi:10.1016/j.pbi.2010.10.005. PMID 21075047.
  • Papenfuss, George F. (1955). "The Classification of the Algae". A century of progress in the natural sciences, 1853-1953. San Francisco: California Academy of Sciences. pp. 115–224.
  • Pascher, A. (1914). "Über Flagellaten und Algen". Berichte der Deutschen Botanischen Gesellschaft. 32: 136–160. doi:10.1111/j.1438-8677.1914.tb07573.x. S2CID 257830577.
  • Reichenbach, H. TH. L. (1828). Conspectus Regni Vegetabilis per Gradus Naturales Evoluti. Lipsiae (Leipzig): apud Carolum Cnobloch. doi:10.5962/bhl.title.127418. OCLC 5359726.
  • Rockwell, Nathan C.; Martin, Shelley S.; Li, Fay-Wei; Mathews, Sarah; Lagarias, J. Clark (May 2017). "The phycocyanobilin chromophore of streptophyte algal phytochromes is synthesized by HY2". The New Phytologist. 214 (3): 1145–1157. doi:10.1111/nph.14422. PMC 5388591. PMID 28106912.
  • Round, F. E. (1971). "The taxonomy of the Chlorophyta. II". British Phycological Journal. 6 (2): 235–264. doi:10.1080/00071617100650261.
  • Smith, Gilbert M. (1938). Cryptogamic Botany. Vol. 1 (1st ed.). McGraw Hill Book Company.
  • Srivastava, Purnima (2002). "Carbonaceous Megafossils from the Dholpura Shale, Uppermost Vindhyan Supergroup, Rajasthan: An Age Implication" (PDF). Journal of the Palaeontological Society of India. 47: 97–105.
  • Tang, Qing; Pang, Ke; Yuan, Xunlai; Xiao, Shuhai (February 2020). "A one-billion-year-old multicellular chlorophyte". Nature Ecology & Evolution. 4: 543–549. doi:10.1038/s41559-020-1122-9.
  • Tartar, Aurélien; Boucias, Drion G.; Adams, Byron J.; Becnel, James J. (January 2002). "Phylogenetic analysis identifies the invertebrate pathogen Helicosporidium sp. as a green alga (Chlorophyta)". International Journal of Systematic and Evolutionary Microbiology. 52 (1): 273–279. doi:10.1099/00207713-52-1-273. PMID 11837312.
  • Umen, James G. (October 2014). "Green algae and the origins of multicellularity in the plant kingdom". Cold Spring Harbor Perspectives in Biology. 6 (11): a016170. doi:10.1101/cshperspect.a016170. PMC 4413236. PMID 25324214.
  • van den Hoek, Christiaan; Mann, D. G.; Jahns, H. M. (1995). Algae: An Introduction to Phycology. Cambridge University Press. ISBN 978-0-521-30419-1.
  • Yamaguchi, Haruyo; Suda, Shoichiro; Nakayama, Takeshi; Pienaar, Richard N.; Chihara, Mitsuo; Inouye, Isao (2010). "Taxonomy of Nephroselmis viridis sp. nov. (Nephroselmidophyceae, Chlorophyta), a sister marine species to freshwater N. olivacea". Journal of Plant Research. 124 (1): 49–62. doi:10.1007/s10265-010-0349-y. PMID 20499263.
  • Yang, Zhiping; Ma, Xiaoya; Wang, Qiuping; Tian, Xiaolin; Sun, Jingyan; Zhang, Zhenhua; Xiao, Shuhai; De Clerck, Olivier; Leliaert, Frederik; Zhong, Bojian (September 2023). "Phylotranscriptomics unveil a Paleoproterozoic-Mesoproterozoic origin and deep relationships of the Viridiplantae". Nature Communications. 14 (1): 5542. doi:10.1038/s41467-023-41137-5. PMC 10495350. PMID 37696791.

Further reading

Wikispecies has information related to Chlorophyta.
Wikimedia Commons has media related to Chlorophyta.
  • Burrows EM (1991). Seaweeds of the British Isles. Vol. 2 (Chlorophyta). London: Natural History Museum. ISBN 978-0-565-00981-6.
  • Pickett-Heaps JD (1975). Green Algae. Structure, Reproduction and Evolution in Selected Genera. Stamford, CT: Sinauer Assoc. p. 606.
  • v
  • t
  • e
Classification of Archaeplastida or Plantae s.l.
Domain
Archaea
Bacteria
Eukaryota
(major groups
Excavata
Diaphoretickes
Hacrobia
Cryptista
Rhizaria
Alveolata
Stramenopiles
Plants
Amorphea
Amoebozoa
Opisthokonta
Animals
Fungi
Mesomycetozoea)
Archaeplastida
Picozoa
Rhodelphidia
Rhodophyta
(red algae)
Glaucophyta
incertae sedis
Viridiplantae
or Plantae s.s.
(green algae &
land plants)
Prasinodermophyta
 Chlorophyta
Prasinophytina
Chlorophytina
Streptophyta
Phragmoplastophyta
Anydrophyta
Embryophyta
(land plants)
  • (see below↓)
Embryophytes or Plantae sensu strictissimo
Bryophytes
Marchantiophyta
(liverworts)
Anthocerotophyta
(hornworts)
Bryophyta
(mosses)
 Polysporangiophytes
Protracheophytes*
Tracheophytes
(vascular plants)
Paratracheophytes*
Eutracheophytes
Lycophytes
Euphyllophytes
Moniliformopses
Lignophytes
Progymnosperms*
  • †Noeggerathiopsida
  • †Aneurophytopsida
  • †Archaeopteridopsida
  • †Protopityales
Spermatophytes
(seed plants)
Pteridosperms*
(seed ferns)
and other extinct
seed plant groups
Acrogymnospermae
(living gymnosperms)
Angiospermae
(flowering plants)
  • v
  • t
  • e
Extant life phyla/divisions by domain
Bacteria
Archaea
Eukaryote
"Protist"
Fungi
Plant
Animal
Incertae sedis
Taxon identifiers
Chlorophyta