Borel right process

In the mathematical theory of probability, a Borel right process, named after Émile Borel, is a particular kind of continuous-time random process.

Let E {\displaystyle E} be a locally compact, separable, metric space. We denote by E {\displaystyle {\mathcal {E}}} the Borel subsets of E {\displaystyle E} . Let Ω {\displaystyle \Omega } be the space of right continuous maps from [ 0 , ) {\displaystyle [0,\infty )} to E {\displaystyle E} that have left limits in E {\displaystyle E} , and for each t [ 0 , ) {\displaystyle t\in [0,\infty )} , denote by X t {\displaystyle X_{t}} the coordinate map at t {\displaystyle t} ; for each ω Ω {\displaystyle \omega \in \Omega } , X t ( ω ) E {\displaystyle X_{t}(\omega )\in E} is the value of ω {\displaystyle \omega } at t {\displaystyle t} . We denote the universal completion of E {\displaystyle {\mathcal {E}}} by E {\displaystyle {\mathcal {E}}^{*}} . For each t [ 0 , ) {\displaystyle t\in [0,\infty )} , let

F t = σ { X s 1 ( B ) : s [ 0 , t ] , B E } , {\displaystyle {\mathcal {F}}_{t}=\sigma \left\{X_{s}^{-1}(B):s\in [0,t],B\in {\mathcal {E}}\right\},}
F t = σ { X s 1 ( B ) : s [ 0 , t ] , B E } , {\displaystyle {\mathcal {F}}_{t}^{*}=\sigma \left\{X_{s}^{-1}(B):s\in [0,t],B\in {\mathcal {E}}^{*}\right\},}

and then, let

F = σ { X s 1 ( B ) : s [ 0 , ) , B E } , {\displaystyle {\mathcal {F}}_{\infty }=\sigma \left\{X_{s}^{-1}(B):s\in [0,\infty ),B\in {\mathcal {E}}\right\},}
F = σ { X s 1 ( B ) : s [ 0 , ) , B E } . {\displaystyle {\mathcal {F}}_{\infty }^{*}=\sigma \left\{X_{s}^{-1}(B):s\in [0,\infty ),B\in {\mathcal {E}}^{*}\right\}.}

For each Borel measurable function f {\displaystyle f} on E {\displaystyle E} , define, for each x E {\displaystyle x\in E} ,

U α f ( x ) = E x [ 0 e α t f ( X t ) d t ] . {\displaystyle U^{\alpha }f(x)=\mathbf {E} ^{x}\left[\int _{0}^{\infty }e^{-\alpha t}f(X_{t})\,dt\right].}

Since P t f ( x ) = E x [ f ( X t ) ] {\displaystyle P_{t}f(x)=\mathbf {E} ^{x}\left[f(X_{t})\right]} and the mapping given by t X t {\displaystyle t\rightarrow X_{t}} is right continuous, we see that for any uniformly continuous function f {\displaystyle f} , we have the mapping given by t P t f ( x ) {\displaystyle t\rightarrow P_{t}f(x)} is right continuous.

Therefore, together with the monotone class theorem, for any universally measurable function f {\displaystyle f} , the mapping given by ( t , x ) P t f ( x ) {\displaystyle (t,x)\rightarrow P_{t}f(x)} , is jointly measurable, that is, B ( [ 0 , ) ) E {\displaystyle {\mathcal {B}}([0,\infty ))\otimes {\mathcal {E}}^{*}} measurable, and subsequently, the mapping is also ( B ( [ 0 , ) ) E ) λ μ {\displaystyle \left({\mathcal {B}}([0,\infty ))\otimes {\mathcal {E}}^{*}\right)^{\lambda \otimes \mu }} -measurable for all finite measures λ {\displaystyle \lambda } on B ( [ 0 , ) ) {\displaystyle {\mathcal {B}}([0,\infty ))} and μ {\displaystyle \mu } on E {\displaystyle {\mathcal {E}}^{*}} . Here, ( B ( [ 0 , ) ) E ) λ μ {\displaystyle \left({\mathcal {B}}([0,\infty ))\otimes {\mathcal {E}}^{*}\right)^{\lambda \otimes \mu }} is the completion of B ( [ 0 , ) ) E {\displaystyle {\mathcal {B}}([0,\infty ))\otimes {\mathcal {E}}^{*}} with respect to the product measure λ μ {\displaystyle \lambda \otimes \mu } . Thus, for any bounded universally measurable function f {\displaystyle f} on E {\displaystyle E} , the mapping t P t f ( x ) {\displaystyle t\rightarrow P_{t}f(x)} is Lebeague measurable, and hence, for each α [ 0 , ) {\displaystyle \alpha \in [0,\infty )} , one can define

U α f ( x ) = 0 e α t P t f ( x ) d t . {\displaystyle U^{\alpha }f(x)=\int _{0}^{\infty }e^{-\alpha t}P_{t}f(x)dt.}

There is enough joint measurability to check that { U α : α ( 0 , ) } {\displaystyle \{U^{\alpha }:\alpha \in (0,\infty )\}} is a Markov resolvent on ( E , E ) {\displaystyle (E,{\mathcal {E}}^{*})} , which uniquely associated with the Markovian semigroup { P t : t [ 0 , ) } {\displaystyle \{P_{t}:t\in [0,\infty )\}} . Consequently, one may apply Fubini's theorem to see that

U α f ( x ) = E x [ 0 e α t f ( X t ) d t ] . {\displaystyle U^{\alpha }f(x)=\mathbf {E} ^{x}\left[\int _{0}^{\infty }e^{-\alpha t}f(X_{t})dt\right].}

The following are the defining properties of Borel right processes:[1]

  • Hypothesis Droite 1:
For each probability measure μ {\displaystyle \mu } on ( E , E ) {\displaystyle (E,{\mathcal {E}})} , there exists a probability measure P μ {\displaystyle \mathbf {P} ^{\mu }} on ( Ω , F ) {\displaystyle (\Omega ,{\mathcal {F}}^{*})} such that ( X t , F t , P μ ) {\displaystyle (X_{t},{\mathcal {F}}_{t}^{*},P^{\mu })} is a Markov process with initial measure μ {\displaystyle \mu } and transition semigroup { P t : t [ 0 , ) } {\displaystyle \{P_{t}:t\in [0,\infty )\}} .
  • Hypothesis Droite 2:
Let f {\displaystyle f} be α {\displaystyle \alpha } -excessive for the resolvent on ( E , E ) {\displaystyle (E,{\mathcal {E}}^{*})} . Then, for each probability measure μ {\displaystyle \mu } on ( E , E ) {\displaystyle (E,{\mathcal {E}})} , a mapping given by t f ( X t ) {\displaystyle t\rightarrow f(X_{t})} is P μ {\displaystyle P^{\mu }} almost surely right continuous on [ 0 , ) {\displaystyle [0,\infty )} .

Notes

  1. ^ Sharpe 1988, Sect. 20

References

  • Sharpe, Michael (1988), General Theory of Markov Processes, ISBN 0126390606