Binomial differential equation

In mathematics, the binomial differential equation is an ordinary differential equation of the form ( y ) m = f ( x , y ) , {\displaystyle \left(y'\right)^{m}=f(x,y),} where m {\displaystyle m} is a natural number and f ( x , y ) {\displaystyle f(x,y)} is a polynomial that is analytic in both variables.[1][2]

Solution

Let P ( x , y ) = ( x + y ) k {\displaystyle P(x,y)=(x+y)^{k}} be a polynomial of two variables of order k {\displaystyle k} , where k {\displaystyle k} is a natural number. By the binomial formula,

P ( x , y ) = j = 0 k ( k j ) x j y k j {\displaystyle P(x,y)=\sum \limits _{j=0}^{k}{{\binom {k}{j}}x^{j}y^{k-j}}} .[relevant?]

The binomial differential equation becomes ( y ) m = ( x + y ) k {\textstyle (y')^{m}=(x+y)^{k}} .[clarification needed] Substituting v = x + y {\displaystyle v=x+y} and its derivative v = 1 + y {\displaystyle v'=1+y'} gives ( v 1 ) m = v k {\textstyle (v'-1)^{m}=v^{k}} , which can be written d v d x = 1 + v k m {\textstyle {\tfrac {dv}{dx}}=1+v^{\tfrac {k}{m}}} , which is a separable ordinary differential equation. Solving gives

d v d x = 1 + v k m d v 1 + v k m = d x d v 1 + v k m = x + C {\displaystyle {\begin{array}{lrl}&{\frac {dv}{dx}}&=1+v^{\tfrac {k}{m}}\\\Rightarrow &{\frac {dv}{1+v^{\tfrac {k}{m}}}}&=dx\\\Rightarrow &\int {\frac {dv}{1+v^{\tfrac {k}{m}}}}&=x+C\end{array}}}

Special cases

  • If m = k {\displaystyle m=k} , this gives the differential equation v 1 = v {\displaystyle v'-1=v} and the solution is y ( x ) = C e x x 1 {\displaystyle y\left(x\right)=Ce^{x}-x-1} , where C {\displaystyle C} is a constant.
  • If m | k {\displaystyle m|k} (that is, m {\displaystyle m} is a divisor of k {\displaystyle k} ), then the solution has the form d v 1 + v n = x + C {\textstyle \int {\frac {dv}{1+v^{n}}}=x+C} . In the tables book Gradshteyn and Ryzhik, this form decomposes as:
d v 1 + v n = { 2 n i = 0 n 2 1 P i cos ( 2 i + 1 n π ) + 2 n i = 0 n 2 1 Q i sin ( 2 i + 1 n π ) , n : even integer 1 n ln ( 1 + v ) 2 n i = 0 n 3 2 P i cos ( 2 i + 1 n π ) + 2 n i = 0 n 3 2 Q i sin ( 2 i + 1 n π ) , n : odd integer {\displaystyle \int {\frac {dv}{1+v^{n}}}=\left\{{\begin{array}{ll}-{\frac {2}{n}}\sum \limits _{i=0}^{{\textstyle {n \over 2}}-1}{P_{i}\cos \left({{\frac {2i+1}{n}}\pi }\right)}+{\frac {2}{n}}\sum \limits _{i=0}^{{\tfrac {n}{2}}-1}{Q_{i}\sin \left({{\frac {2i+1}{n}}\pi }\right)},&n:{\text{even integer}}\\\\{\frac {1}{n}}\ln \left({1+v}\right)-{\frac {2}{n}}\sum \limits _{i=0}^{\textstyle {{n-3} \over 2}}{P_{i}\cos \left({{\frac {2i+1}{n}}\pi }\right)}+{\frac {2}{n}}\sum \limits _{i=0}^{\tfrac {n-3}{2}}{Q_{i}\sin \left({{\frac {2i+1}{n}}\pi }\right)},&n:{\text{odd integer}}\\\end{array}}\right.}

where

P i = 1 2 ln ( v 2 2 v cos ( 2 i + 1 n π ) + 1 ) Q i = arctan ( v cos ( 2 i + 1 n π ) sin ( 2 i + 1 n π ) ) {\displaystyle {\begin{aligned}P_{i}&={\frac {1}{2}}\ln \left({v^{2}-2v\cos \left({{\frac {2i+1}{n}}\pi }\right)+1}\right)\\Q_{i}&=\arctan \left({\frac {v-\cos \left({{\textstyle {{2i+1} \over n}}\pi }\right)}{\sin \left({{\textstyle {{2i+1} \over n}}\pi }\right)}}\right)\end{aligned}}}

See also

References

  1. ^ Hille, Einar (1894). Lectures on ordinary differential equations. Addison-Wesley Publishing Company. p. 675. ISBN 978-0201530834.
  2. ^ Zwillinger, Daniel (1998). Handbook of differential equations (3rd ed.). San Diego, Calif: Academic Press. p. 180. ISBN 978-0-12-784396-4.