Llista de fórmules amb π

A continuació es mostra una llista de fórmules que tenen a veure amb la constant matemàtica π.

Geometria clàssica

π = L / d {\displaystyle \pi =L/d\!}

on L és la longitud d'una circumferència de diàmetre d.

A = π r 2 {\displaystyle A=\pi r^{2}\!}

on A és l'àrea d'un cercle de radi r.

V = 4 3 π r 3 {\displaystyle V={4 \over 3}\pi r^{3}\!}

on V és el volum d'una esfera de radi r.

S = 4 π r 2 {\displaystyle S=4\pi r^{2}\!}

on S és la superfície exterior d'una esfera de radi r.

Física

Λ = 8 π G 3 c 2 ρ {\displaystyle \Lambda ={{8\pi G} \over {3c^{2}}}\rho \!}


Δ x Δ p h 4 π {\displaystyle \Delta x\,\Delta p\geq {\frac {h}{4\pi }}\!}


R μ ν 1 2 g μ ν R + Λ g μ ν = 8 π G c 4 T μ ν {\displaystyle R_{\mu \nu }-{\frac {1}{2}}g_{\mu \nu }R+\Lambda g_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu }\!}


  • La llei de Coulomb de la força elèctrica:
F = | q 1 q 2 | 4 π ε 0 r 2 {\displaystyle F={\frac {\left|q_{1}q_{2}\right|}{4\pi \varepsilon _{0}r^{2}}}\!}


  • Permeabilitat magnètica en el buit:
μ 0 = 4 π 10 7 N / A 2 {\displaystyle \mu _{0}=4\pi \cdot 10^{-7}\,\mathrm {N/A^{2}} \!}


  • Període d'un pèndol simple d'amplitud petita:
T 2 π L g {\displaystyle T\approx 2\pi {\sqrt {\frac {L}{g}}}\!}


  • La fórmula del vinclament:
F = π 2 E I L 2 {\displaystyle F={\frac {\pi ^{2}EI}{L^{2}}}}

Identitats

Integrals

sech ( x ) d x = π {\displaystyle \int \limits _{-\infty }^{\infty }{\text{sech}}(x)dx=\pi \!}


t e 1 / 2 t 2 x 2 + x t d x d t = t e t 2 1 / 2 x 2 + x t d x d t = π {\displaystyle \int \limits _{-\infty }^{\infty }\int \limits _{t}^{\infty }e^{-1/2t^{2}-x^{2}+xt}dxdt=\int \limits _{-\infty }^{\infty }\int \limits _{t}^{\infty }e^{^{-}t^{2}-1/2x^{2}+xt}dxdt=\pi \!}


1 1 1 x 2 d x = π 2 {\displaystyle \int \limits _{-1}^{1}{\sqrt {1-x^{2}}}\,dx={\frac {\pi }{2}}\!}


1 1 d x 1 x 2 = π {\displaystyle \int \limits _{-1}^{1}{\frac {dx}{\sqrt {1-x^{2}}}}=\pi \!}


d x 1 + x 2 = π {\displaystyle \int \limits _{-\infty }^{\infty }{\frac {dx}{1+x^{2}}}=\pi \!} (forma integral de l'arctangent al llarg de tot el seu domini).


e x 2 d x = π {\displaystyle \int \limits _{-\infty }^{\infty }e^{-x^{2}}\,dx={\sqrt {\pi }}\!} (veure Integral de Gauß).


d z z = 2 π i {\displaystyle \oint {\frac {dz}{z}}=2\pi i\!} (Vegeu també fórmula de la integral de Cauchy)


sin x x d x = π {\displaystyle \int \limits _{-\infty }^{\infty }{\frac {\sin x}{x}}\,dx=\pi \!}


0 1 x 4 ( 1 x ) 4 1 + x 2 d x = 22 7 π {\displaystyle \int \limits _{0}^{1}{x^{4}(1-x)^{4} \over 1+x^{2}}\,dx={22 \over 7}-\pi \!}


Sèries infinites eficients

k = 0 k ! ( 2 k + 1 ) ! ! = k = 0 2 k k ! 2 ( 2 k + 1 ) ! = π 2 {\displaystyle \sum _{k=0}^{\infty }{\frac {k!}{(2k+1)!!}}=\sum _{k=0}^{\infty }{\frac {2^{k}k!^{2}}{(2k+1)!}}={\frac {\pi }{2}}\!}


12 k = 0 ( 1 ) k ( 6 k ) ! ( 13591409 + 545140134 k ) ( 3 k ) ! ( k ! ) 3 640320 3 k + 3 / 2 = 1 π {\displaystyle 12\sum _{k=0}^{\infty }{\frac {(-1)^{k}(6k)!(13591409+545140134k)}{(3k)!(k!)^{3}640320^{3k+3/2}}}={\frac {1}{\pi }}\!}


2 2 9801 k = 0 ( 4 k ) ! ( 1103 + 26390 k ) ( k ! ) 4 396 4 k = 1 π {\displaystyle {\frac {2{\sqrt {2}}}{9801}}\sum _{k=0}^{\infty }{\frac {(4k)!(1103+26390k)}{(k!)^{4}396^{4k}}}={\frac {1}{\pi }}\!} (veure Srinivasa Ramanujan)


3 6 5 k = 0 ( ( 4 k ) ! ) 2 ( 6 k ) ! 9 k + 1 ( 12 k ) ! ( 2 k ) ! ( 127169 12 k + 1 1070 12 k + 5 131 12 k + 7 + 2 12 k + 11 ) = π {\displaystyle {\frac {\sqrt {3}}{6^{5}}}\sum _{k=0}^{\infty }{\frac {((4k)!)^{2}(6k)!}{9^{k+1}(12k)!(2k)!}}\left({\frac {127169}{12k+1}}-{\frac {1070}{12k+5}}-{\frac {131}{12k+7}}+{\frac {2}{12k+11}}\right)=\pi \!} [1]


Les següents identitats són útils per calcular dígits binaris arbitraris de π:

k = 0 1 16 k ( 4 8 k + 1 2 8 k + 4 1 8 k + 5 1 8 k + 6 ) = π {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{16^{k}}}\left({\frac {4}{8k+1}}-{\frac {2}{8k+4}}-{\frac {1}{8k+5}}-{\frac {1}{8k+6}}\right)=\pi \!}


1 2 6 n = 0 ( 1 ) n 2 10 n ( 2 5 4 n + 1 1 4 n + 3 + 2 8 10 n + 1 2 6 10 n + 3 2 2 10 n + 5 2 2 10 n + 7 + 1 10 n + 9 ) = π {\displaystyle {\frac {1}{2^{6}}}\sum _{n=0}^{\infty }{\frac {{(-1)}^{n}}{2^{10n}}}\left(-{\frac {2^{5}}{4n+1}}-{\frac {1}{4n+3}}+{\frac {2^{8}}{10n+1}}-{\frac {2^{6}}{10n+3}}-{\frac {2^{2}}{10n+5}}-{\frac {2^{2}}{10n+7}}+{\frac {1}{10n+9}}\right)=\pi \!}


Altres sèries infinites

ζ ( 2 ) = 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + = π 2 6 {\displaystyle \zeta (2)={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{4^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}\!} (vegeu també el problema de Basilea i la funció zeta de Riemann)


ζ ( 4 ) = 1 1 4 + 1 2 4 + 1 3 4 + 1 4 4 + = π 4 90 {\displaystyle \zeta (4)={\frac {1}{1^{4}}}+{\frac {1}{2^{4}}}+{\frac {1}{3^{4}}}+{\frac {1}{4^{4}}}+\cdots ={\frac {\pi ^{4}}{90}}\!}


ζ ( 2 n ) = k = 1 1 k 2 n = 1 1 2 n + 1 2 2 n + 1 3 2 n + 1 4 2 n + = ( 1 ) n + 1 B 2 n ( 2 π ) 2 n 2 ( 2 n ) ! {\displaystyle \zeta (2n)=\sum _{k=1}^{\infty }{\frac {1}{k^{2n}}}\,={\frac {1}{1^{2n}}}+{\frac {1}{2^{2n}}}+{\frac {1}{3^{2n}}}+{\frac {1}{4^{2n}}}+\cdots =(-1)^{n+1}{\frac {B_{2n}(2\pi )^{2n}}{2(2n)!}}\!} , on B2n és un nombre de Bernoulli.


n = 1 3 n 1 4 n ζ ( n + 1 ) = π {\displaystyle \sum _{n=1}^{\infty }{\frac {3^{n}-1}{4^{n}}}\,\zeta (n+1)=\pi \!} [2]


n = 0 ( ( 1 ) n 2 n + 1 ) 1 = 1 1 1 3 + 1 5 1 7 + 1 9 = arctan 1 = π 4 {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{1}={\frac {1}{1}}-{\frac {1}{3}}+{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}-\cdots =\arctan {1}={\frac {\pi }{4}}\!} (sèrie de Leibniz)


n = 0 ( ( 1 ) n 2 n + 1 ) 2 = 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + = π 2 8 {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{2}={\frac {1}{1^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{5^{2}}}+{\frac {1}{7^{2}}}+\cdots ={\frac {\pi ^{2}}{8}}\!}


n = 0 ( ( 1 ) n 2 n + 1 ) 3 = 1 1 3 1 3 3 + 1 5 3 1 7 3 + = π 3 32 {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{3}={\frac {1}{1^{3}}}-{\frac {1}{3^{3}}}+{\frac {1}{5^{3}}}-{\frac {1}{7^{3}}}+\cdots ={\frac {\pi ^{3}}{32}}\!}


n = 0 ( ( 1 ) n 2 n + 1 ) 4 = 1 1 4 + 1 3 4 + 1 5 4 + 1 7 4 + = π 4 96 {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{4}={\frac {1}{1^{4}}}+{\frac {1}{3^{4}}}+{\frac {1}{5^{4}}}+{\frac {1}{7^{4}}}+\cdots ={\frac {\pi ^{4}}{96}}\!}


n = 0 ( ( 1 ) n 2 n + 1 ) 5 = 1 1 5 1 3 5 + 1 5 5 1 7 5 + = 5 π 5 1536 {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{5}={\frac {1}{1^{5}}}-{\frac {1}{3^{5}}}+{\frac {1}{5^{5}}}-{\frac {1}{7^{5}}}+\cdots ={\frac {5\pi ^{5}}{1536}}\!}


n = 0 ( ( 1 ) n 2 n + 1 ) 6 = 1 1 6 + 1 3 6 + 1 5 6 + 1 7 6 + = π 6 960 {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{6}={\frac {1}{1^{6}}}+{\frac {1}{3^{6}}}+{\frac {1}{5^{6}}}+{\frac {1}{7^{6}}}+\cdots ={\frac {\pi ^{6}}{960}}\!}


π = 1 + 1 2 + 1 3 + 1 4 1 5 + 1 6 + 1 7 + 1 8 + 1 9 1 10 + 1 11 + 1 12 1 13 + {\displaystyle \pi ={1}+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{4}}-{\frac {1}{5}}+{\frac {1}{6}}+{\frac {1}{7}}+{\frac {1}{8}}+{\frac {1}{9}}-{\frac {1}{10}}+{\frac {1}{11}}+{\frac {1}{12}}-{\frac {1}{13}}+\cdots \!} (Euler, 1748)
Després dels dos primers termes, els signes venen determinats de la següent manera: si el denominador és un nombre primer de la forma 4m - 1, el signe és positiu; si el denominador és un nombre primer de la forma 4m + 1, es signe és negatiu; per nombres compostos,el signe és igual al producte dels signes dels factors.[3]

Fórmules de Machin

π 4 = 4 arctan 1 5 arctan 1 239 {\displaystyle {\frac {\pi }{4}}=4\arctan {\frac {1}{5}}-\arctan {\frac {1}{239}}\!} (la fórmula original de Machin)


π 4 = arctan 1 {\displaystyle {\frac {\pi }{4}}=\arctan 1}


π 4 = arctan 1 2 + arctan 1 3 {\displaystyle {\frac {\pi }{4}}=\arctan {\frac {1}{2}}+\arctan {\frac {1}{3}}\!} (d'Euler)


π 4 = 2 arctan 1 2 arctan 1 7 {\displaystyle {\frac {\pi }{4}}=2\arctan {\frac {1}{2}}-\arctan {\frac {1}{7}}\!} (de Hermann)


π 4 = 2 arctan 1 3 + arctan 1 7 {\displaystyle {\frac {\pi }{4}}=2\arctan {\frac {1}{3}}+\arctan {\frac {1}{7}}\!} (de Hutton o de Vega[4])


π 4 = 5 arctan 1 7 + 2 arctan 3 79 {\displaystyle {\frac {\pi }{4}}=5\arctan {\frac {1}{7}}+2\arctan {\frac {3}{79}}\!}


π 4 = 12 arctan 1 49 + 32 arctan 1 57 5 arctan 1 239 + 12 arctan 1 110443 {\displaystyle {\frac {\pi }{4}}=12\arctan {\frac {1}{49}}+32\arctan {\frac {1}{57}}-5\arctan {\frac {1}{239}}+12\arctan {\frac {1}{110443}}\!}


π 4 = 44 arctan 1 57 + 7 arctan 1 239 12 arctan 1 682 + 24 arctan 1 12943 {\displaystyle {\frac {\pi }{4}}=44\arctan {\frac {1}{57}}+7\arctan {\frac {1}{239}}-12\arctan {\frac {1}{682}}+24\arctan {\frac {1}{12943}}\!}


π 2 = n = 0 arctan 1 F 2 n + 1 = arctan 1 1 + arctan 1 2 + arctan 1 5 + arctan 1 13 + {\displaystyle {\frac {\pi }{2}}=\sum _{n=0}^{\infty }\arctan {\frac {1}{F_{2n+1}}}=\arctan {\frac {1}{1}}+\arctan {\frac {1}{2}}+\arctan {\frac {1}{5}}+\arctan {\frac {1}{13}}+\cdots \!}

on F n {\displaystyle F_{n}} és l'enèssim nombre de Fibonacci.

Algunes sèries infinites

Algunes sèries infinites relacionades amb pi són:[5]

π = 1 Z {\displaystyle \pi ={\frac {1}{Z}}\!} Z = n = 0 ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}\!}
π = 4 Z {\displaystyle \pi ={\frac {4}{Z}}\!} Z = n = 0 ( 1 ) n ( 4 n ) ! ( 21460 n + 1123 ) ( n ! ) 4 441 2 n + 1 2 10 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(21460n+1123)}{(n!)^{4}{441}^{2n+1}{2}^{10n+1}}}}
π = 4 Z {\displaystyle \pi ={\frac {4}{Z}}\!} Z = n = 0 ( 6 n + 1 ) ( 1 2 ) n 3 4 n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(6n+1)\left({\frac {1}{2}}\right)_{n}^{3}}{{4^{n}}(n!)^{3}}}\!}
π = 32 Z {\displaystyle \pi ={\frac {32}{Z}}\!} Z = n = 0 ( 5 1 2 ) 8 n ( 42 n 5 + 30 n + 5 5 1 ) ( 1 2 ) n 3 64 n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {{\sqrt {5}}-1}{2}}\right)^{8n}{\frac {(42n{\sqrt {5}}+30n+5{\sqrt {5}}-1)\left({\frac {1}{2}}\right)_{n}^{3}}{{64^{n}}(n!)^{3}}}\!}
π = 27 4 Z {\displaystyle \pi ={\frac {27}{4Z}}\!} Z = n = 0 ( 2 27 ) n ( 15 n + 2 ) ( 1 2 ) n ( 1 3 ) n ( 2 3 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {2}{27}}\right)^{n}{\frac {(15n+2)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{3}}\right)_{n}\left({\frac {2}{3}}\right)_{n}}{(n!)^{3}}}\!}
π = 15 3 2 Z {\displaystyle \pi ={\frac {15{\sqrt {3}}}{2Z}}\!} Z = n = 0 ( 4 125 ) n ( 33 n + 4 ) ( 1 2 ) n ( 1 3 ) n ( 2 3 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{125}}\right)^{n}{\frac {(33n+4)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{3}}\right)_{n}\left({\frac {2}{3}}\right)_{n}}{(n!)^{3}}}\!}
π = 85 85 18 3 Z {\displaystyle \pi ={\frac {85{\sqrt {85}}}{18{\sqrt {3}}Z}}\!} Z = n = 0 ( 4 85 ) n ( 133 n + 8 ) ( 1 2 ) n ( 1 6 ) n ( 5 6 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{85}}\right)^{n}{\frac {(133n+8)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{6}}\right)_{n}\left({\frac {5}{6}}\right)_{n}}{(n!)^{3}}}\!}
π = 5 5 2 3 Z {\displaystyle \pi ={\frac {5{\sqrt {5}}}{2{\sqrt {3}}Z}}\!} Z = n = 0 ( 4 125 ) n ( 11 n + 1 ) ( 1 2 ) n ( 1 6 ) n ( 5 6 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{125}}\right)^{n}{\frac {(11n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{6}}\right)_{n}\left({\frac {5}{6}}\right)_{n}}{(n!)^{3}}}\!}
π = 2 3 Z {\displaystyle \pi ={\frac {2{\sqrt {3}}}{Z}}\!} Z = n = 0 ( 8 n + 1 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 9 n {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(8n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{9}^{n}}}\!}
π = 3 9 Z {\displaystyle \pi ={\frac {\sqrt {3}}{9Z}}\!} Z = n = 0 ( 40 n + 3 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 49 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(40n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{49}^{2n+1}}}\!}
π = 2 11 11 Z {\displaystyle \pi ={\frac {2{\sqrt {11}}}{11Z}}\!} Z = n = 0 ( 280 n + 19 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 99 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(280n+19)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{99}^{2n+1}}}\!}
π = 2 4 Z {\displaystyle \pi ={\frac {\sqrt {2}}{4Z}}\!} Z = n = 0 ( 10 n + 1 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 9 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(10n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{9}^{2n+1}}}\!}
π = 4 5 5 Z {\displaystyle \pi ={\frac {4{\sqrt {5}}}{5Z}}\!} Z = n = 0 ( 644 n + 41 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 5 n 72 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(644n+41)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}5^{n}{72}^{2n+1}}}\!}
π = 4 3 3 Z {\displaystyle \pi ={\frac {4{\sqrt {3}}}{3Z}}\!} Z = n = 0 ( 1 ) n ( 28 n + 3 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 3 n 4 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(28n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{3^{n}}{4}^{n+1}}}\!}
π = 4 Z {\displaystyle \pi ={\frac {4}{Z}}\!} Z = n = 0 ( 1 ) n ( 20 n + 3 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 2 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(20n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{2}^{2n+1}}}\!}
π = 72 Z {\displaystyle \pi ={\frac {72}{Z}}\!} Z = n = 0 ( 1 ) n ( 4 n ) ! ( 260 n + 23 ) ( n ! ) 4 4 4 n 18 2 n {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(260n+23)}{(n!)^{4}4^{4n}18^{2n}}}\!}
π = 3528 Z {\displaystyle \pi ={\frac {3528}{Z}}\!} Z = n = 0 ( 1 ) n ( 4 n ) ! ( 21460 n + 1123 ) ( n ! ) 4 4 4 n 882 2 n {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(21460n+1123)}{(n!)^{4}4^{4n}882^{2n}}}\!}

on

( x ) n {\displaystyle (x)_{n}\!}

és el símbol de Pochhammer del factorial decreixent.

Productes infinits

π 4 = 3 4 5 4 7 8 11 12 13 12 17 16 19 20 23 24 29 28 31 32 {\displaystyle {\frac {\pi }{4}}={\frac {3}{4}}\cdot {\frac {5}{4}}\cdot {\frac {7}{8}}\cdot {\frac {11}{12}}\cdot {\frac {13}{12}}\cdot {\frac {17}{16}}\cdot {\frac {19}{20}}\cdot {\frac {23}{24}}\cdot {\frac {29}{28}}\cdot {\frac {31}{32}}\cdots \!} (Euler)
on els numeradors són els nombres primers senars; i cada denominador és el múltiple de 4 més proper al numerador.
n = 1 4 n 2 4 n 2 1 = 2 1 2 3 4 3 4 5 6 5 6 7 8 7 8 9 = 4 3 16 15 36 35 64 63 = π 2 {\displaystyle \prod _{n=1}^{\infty }{\frac {4n^{2}}{4n^{2}-1}}={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot {\frac {8}{7}}\cdot {\frac {8}{9}}\cdots ={\frac {4}{3}}\cdot {\frac {16}{15}}\cdot {\frac {36}{35}}\cdot {\frac {64}{63}}\cdots ={\frac {\pi }{2}}\!}


Fórmula de Vieète:

2 2 2 + 2 2 2 + 2 + 2 2 = 2 π {\displaystyle {\frac {\sqrt {2}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2}}}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2+{\sqrt {2}}}}}}{2}}\cdot \cdots ={\frac {2}{\pi }}\!}

Fraccions contínues

π = 3 + 1 2 6 + 3 2 6 + 5 2 6 + 7 2 6 + {\displaystyle \pi ={3+{\cfrac {1^{2}}{6+{\cfrac {3^{2}}{6+{\cfrac {5^{2}}{6+{\cfrac {7^{2}}{6+\ddots \,}}}}}}}}}}


π = 4 1 + 1 2 3 + 2 2 5 + 3 2 7 + 4 2 9 + {\displaystyle \pi ={\cfrac {4}{1+{\cfrac {1^{2}}{3+{\cfrac {2^{2}}{5+{\cfrac {3^{2}}{7+{\cfrac {4^{2}}{9+\ddots }}}}}}}}}}}


π = 4 1 + 1 2 2 + 3 2 2 + 5 2 2 + 7 2 2 + {\displaystyle \pi ={\cfrac {4}{1+{\cfrac {1^{2}}{2+{\cfrac {3^{2}}{2+{\cfrac {5^{2}}{2+{\cfrac {7^{2}}{2+\ddots }}}}}}}}}}\,}

(vegeu també fracció contínua)

Miscel·lani

n ! 2 π n ( n e ) n {\displaystyle n!\sim {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}\!} (aproximació de Stirling)


e i π + 1 = 0 {\displaystyle e^{i\pi }+1=0\!} (Identitat d'Euler)


k = 1 n φ ( k ) 3 n 2 π 2 {\displaystyle \sum _{k=1}^{n}\varphi (k)\sim {\frac {3n^{2}}{\pi ^{2}}}\!} (veure Funció φ d'Euler)


k = 1 n φ ( k ) k 6 n π 2 {\displaystyle \sum _{k=1}^{n}{\frac {\varphi (k)}{k}}\sim {\frac {6n}{\pi ^{2}}}\!} (veure Funció φ d'Euler)


Γ ( 1 2 ) = π {\displaystyle \Gamma \left({1 \over 2}\right)={\sqrt {\pi }}\!} (veure trambé funció Gamma)


π = Γ ( 1 / 4 ) 4 / 3 a g m ( 1 , 2 ) 2 / 3 2 {\displaystyle \pi ={\frac {\Gamma \left({1/4}\right)^{4/3}\mathrm {agm} (1,{\sqrt {2}})^{2/3}}{2}}\!} (on agm és la Mitjana aritmètico-geomètrica)


lim n 1 n 2 k = 1 n ( n mod k ) = 1 π 2 12 {\displaystyle \lim _{n\rightarrow \infty }{\frac {1}{n^{2}}}\sum _{k=1}^{n}(n\;{\bmod {\;}}k)=1-{\frac {\pi ^{2}}{12}}\!} (on mod és la funció mòdul, que dona el residu de la divisió de n entre k)


π = lim n 4 n 2 k = 1 n n 2 k 2 {\displaystyle \pi =\lim _{n\rightarrow \infty }{\frac {4}{n^{2}}}\sum _{k=1}^{n}{\sqrt {n^{2}-k^{2}}}} (sumatori de Riemann per avaluar l'àrea d'un cercle unitat)


π = lim n 2 4 n n ( 2 n n ) 2 {\displaystyle \pi =\lim _{n\rightarrow \infty }{\frac {2^{4n}}{n{2n \choose n}^{2}}}} (a través de l'aproximació de Stirling)

Referències

  1. Cetin Hakimoglu-Brown Derivation of Rapidly Converging Infinite Series
  2. Weisstein, Eric W. "Pi Formulas", MathWorld
  3. Carl B. Boyer, A History of Mathematics, Chapter 21., p. 488-489
  4. Carl Størmer «Solution complète en nombres entiers de l'équation m arctan 1 x + n arctan 1 y = k π 4 {\displaystyle m\arctan {\frac {1}{x}}+n\arctan {\frac {1}{y}}=k{\frac {\pi }{4}}} » (en francès). Bulletin de la S.M.F., 27, 1899, pàg. 160–170.
  5. Simon Plouffe / David Bailey. «The world of Pi». Pi314.net. [Consulta: 29 gener 2011].
    «Collection of series for Plantilla:Pi». Numbers.computation.free.fr. [Consulta: 29 gener 2011].